

Final 2022 Annual Groundwater Monitoring and Corrective Action Report LOS CCR Landfill

Leland Olds Station Stanton, North Dakota

Basin Electric Power Cooperative

January 31, 2023 Project #60634996

Basin Electric Power Cooperative Bismarck, North Dakota

Quality information

Prepared by	Check	ked by	Verified by		Approved by
En doty	+ 4	1	A	2=	T.M.
Erin Doty	Jason	D. Lach	Dennis P. Con	inair, P.G.	Jeremy Hurshman, P.G.
Revision His	story				
Revision	Revision date	Details	Authorized	Name	Position
Distribution	Liet				
Distribution	LISI				
# Hard Copies	PDF Required	Association /	Company Name		
Three	One	Kevin L. Solie	, P.E., Basin Electric Pov	wer Cooperative	e

Prepared for:

Basin Electric Power Cooperative Bismarck, North Dakota

Prepared by:

AECOM 525 Vine Street Suite 1800 Cincinnati, OH 45202 aecom.com

Copyright © 2023 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

List o	of Acronyms	ii
Exec	cutive Summary	ES-1
1.	Introduction	1-1
	Regulatory Background	1-1
	Facility Location and Operational History	1-1
	CCR Unit Description	1-1
	Physical Setting	1-1
2.	CCR Groundwater Monitoring Activity Prior to 2022	2-1
3.	CCR Groundwater Monitoring and Corrective Action Activities in 2022	3-1
	Detection Monitoring Activities	3-1
	Monitoring System Evaluation	3-1
	Groundwater Sampling and Analysis	3-1
	Statistical Procedures and Analysis	3-2
4.	General Information	4-1
	Program Transitions 2022	4-1
	Problems Encountered	4-1
	Actions Planned for 2023	4-1
5.	Summary and Conclusions	5-1
6.	References	6-1

Figures

Figure 1	Site Vicinity Map
Figure 2	LOS CCR Monitoring Well Network
Figure 3	Boron Control Chart for October 2022

Tables

Table 1	Background Upper Prediction Limits (UPLs) or Control Limits, CCR Landfill
Table 2	Statistical Method Analytical Results, CCR Landfill

Attachments

Attachment A	Sampling and Analysis Report, 2022, CCR Monitoring Program
Attachment B	Boring Logs and Well Construction Diagrams
Attachment C	Input Data Files for Calculation of Upper and Lower Prediction Limits

List of Acronyms

AECOM Technical Services, Inc.
Basin Electric Power Cooperative
Coal Combustion Residuals
United States Environmental Protection Agency
flue gas desulfurization
feet above mean sea level
groundwater protection standards
lower control limits
Leland Olds Station
lower prediction limit
milligrams per liter
Resource Conservation and Recovery Act
statistically significant increase
upper control limit
upper prediction limit

Executive Summary

This report summarizes groundwater monitoring and corrective action activities completed between January 1 and December 31, 2022, at the Coal Combustion Residuals (CCR) Landfill at Leland Olds Station (LOS), as required by 40 Code of Federal Regulations Section 257.90(e) of the United States Environmental Protection Agency (USEPA) CCR Rule.

The location of the CCR units and program monitoring network for the CCR units, including supporting monitoring wells are illustrated on **Figures 1** and **2**, respectively. In October, two (2) additional monitoring wells were added to the CCR monitoring network and four (4) existing monitoring wells were decommissioned on site (differentiated in **Figure 2**).

Detection-mode groundwater monitoring of the CCR Landfill was initiated in 2018. Detection monitoring through October 2022 identified no statistically significant increases (SSIs) of Appendix III constituents of boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids in the downgradient monitoring wells MW-2016-2, MW-2016-9, MW-2016-10, and MW-2016-11. Accordingly, the unit remains in detection monitoring into the next year.

Other activities and conditions for the 2022 annual reporting period include:

- Semiannual Detection-mode groundwater monitoring events were conducted in June and October. Monitoring involved sampling of five background monitoring wells and four downgradient monitoring wells in June and sampling of three background and four downgradient monitoring wells in October.
- Two (2) monitoring wells (MW-2016-12 and MW-2016-13) were installed in October downgradient to the proposed Landfill Expansion Area
- Four (4) monitoring wells (MW-2016-1, MW-2016-4, MW-2016-5, and MW-2016-7) were decommissioned and abandoned from the program monitoring network.
- No program transitions (Detection to Assessment or vice versa) were triggered.
- No programmatic problems were encountered, so no remedies were required.

Anticipated activities for the next annual reporting period include:

- Completion of two semiannual Detection-mode groundwater monitoring events.
- Initiation of baseline monitoring of new landfill expansion wells in Spring 2023 (weather permitting) prior to anticipated CCR placement into the landfill expansion area in Fall 2023.
- Statistical evaluation of groundwater data for Appendix III constituents.

1. Introduction

On behalf of Basin Electric Power Cooperative, (Basin), AECOM Technical Services, Inc. (AECOM) has prepared the 2022 annual report documenting groundwater monitoring and corrective action for the Glenharold Coal Combustion Residuals (CCR) Landfill at Basin's Leland Olds Station (LOS).

Section 1 provides background information on the power generating facility, the CCR unit(s) present at the facility, and the physical setting of the CCR unit(s), specifically regarding groundwater conditions. Section 2 summarizes CCR groundwater monitoring activities conducted prior to the current reporting year. Section 3 summarizes the groundwater monitoring and corrective action activities completed in the current reporting year, and references attachments to this report that contain detailed documentation of those activities. Section 4 reports on general information including program transitions, problems encountered, and anticipated activities for the coming year. Section 5 summarizes the report content. Section 6 lists references cited in this report.

Regulatory Background

The CCR Rule, effective on October 19, 2015, established standards for the disposal of CCR in landfills and surface impoundments (CCR units). In particular, the rule set forth groundwater monitoring and corrective action requirements for CCR units. The Rule includes the requirement for an "annual groundwater monitoring and corrective action report" (annual report), submitted to the operating record annually on or before January 31 of the year following the monitoring period. The annual report is intended to document the status of the groundwater monitoring and corrective action program for each CCR unit, summarize key actions completed in the previous year, and project key activities for the upcoming year. This report is the sixth annual report, and includes activities performed in calendar year 2022.

Facility Location and Operational History

LOS is a coal-based generating station located southeast of Stanton, North Dakota (**Figure 1**). The plant, which began operating in 1966, consists of two power generating units with a total power output capacity of 669 megawatts.

CCR produced at LOS includes fly ash, bottom ash, and flue gas desulfurization (FGD) waste.

CCR Unit Description

CCR is disposed at LOS in the following CCR unit:

CCR Landfill

The CCR Landfill is located approximately 3 miles southwest of the generating units and office complex, in an area of mine spoils (**Figure 1**). Basin reported that in 2022 the LOS CCR Landfill received approximately 240,000 cubic yards of solid waste, including fly ash, FGD waste, and a minor contribution of solid debris.

Physical Setting

The geology underlying the site includes mine spoils underlain by the Sentinel Butte Formation. This formation is comprised of continental deposits in excess of 1,000-feet thickness, consisting of dense clay, weakly cemented sandstone, mudstone, and lignite beds.

The topography of the surrounding areas consists of alluvial terraces and historic mine spoils. Much of the surrounding mined areas have historically been developed such that precipitation outside of the landfill footprint is generally redirected as surface water runoff toward drainage ditches and culverts that drain to Alderin Creek and ultimately to the Missouri River. Groundwater is recharged primarily through regional infiltration of melt water in the spring.

The base of the LOS CCR Landfill is underlain by approximately 50 feet of clay-rich mine spoil that overlies the Lower Sentinel Butte Formation. At the site, the Sentinel Butte is comprised primarily of dense clay with a trace very fine sand and sparse beds of lignite typically ranging from 6- to 9-feet thick. The 2016 AECOM drilling investigation did not penetrate to depths great enough to expose the lower portions of the Sentinel Butte.

The uppermost aquifer is found within the 6- to 9-foot unmined lignite bed located at depths ranging roughly from 86 to 125 feet below ground surface. The elevation of the lignite bed varies across the site by approximately 32 feet from 1,811 feet above mean sea level (ft amsl) at MW-2016-4 to 1,843 ft amsl at MW-2016-1. The potentiometric surface of the uppermost groundwater present within the lignite is approximately 1,880 ft amsl in the southern portion of the Landfill facility sloping generally north-northeast to 1,843 ft amsl on the northern side of the landfill. Aquifer testing completed at monitoring wells MW-2016-4, MW-2016-8, and MW-2016-10 indicates an average hydraulic conductivity of 1.21×10^{-5} centimeters per second for the saturated materials.

2. CCR Groundwater Monitoring Activity Prior to 2022

The regulatory process for CCR groundwater monitoring and corrective action is established by 40 Code of Federal Regulations (CFR) Sections 257.90 through 257.98. The process includes a phased approach to groundwater monitoring, leading (if applicable) to the establishment of groundwater protection standards (GWPSs) for each CCR unit. Exceedances of the GWPSs that are determined to be statistically significant can trigger requirements for additional groundwater characterization and Assessment of Corrective Measures followed by selection of remedy and remedy implementation.

The following paragraphs provide a brief summary of CCR groundwater monitoring activities performed prior to 2022. CCR groundwater monitoring activities performed between January and December 2022 are discussed in Section 3.

Groundwater monitoring at the CCR Landfill is performed using a network of monitoring wells that includes wells to monitor background water quality that is not potentially influenced by the presence of the CCR unit and wells placed at the downgradient boundary of the unit (**Figure 2**). The hydro-stratigraphic positions of the CCR monitoring wells selected for sampling background and downgradient groundwater quality for the LOS CCR Landfill are summarized below:

CCR unit	Background wells	Downgradient wells
Active Landfill	MW-2016-3, MW-2016-4, MW-2016-5, MW-2016-6, MW-2016-8	MW-2016-2, MW-2016-9, MW-2016-10, MW-2016-11

Two monitoring wells have historically been excluded from the groundwater monitoring network due to deficiencies. Monitoring well MW-2016-1 was excluded due to insufficient water production to obtain a representative sample. Monitoring well MW-2016-7 was excluded due to screen interval placement that is not representative of the uppermost aquifer monitoring at the site.

Baseline monitoring, initiated in August 2016, involved sampling groundwater for Appendix III and Appendix IV constituents over eight Baseline Detection monitoring events.

Baseline detection monitoring events were performed in general accordance with procedures established in the site-specific Sampling and Analysis Plan (AECOM 2018a), which is included in the facility's Operating Record. The Sampling and Analysis Plan describes the procedures for equipment calibration, monitoring well water level measurement, monitoring well purging and sampling, sample custody, sample shipping, laboratory analysis, and documentation requirements for each groundwater sample submitted. The results of the baseline monitoring and 2018 detection monitoring at the LOS CCR Landfill were presented and discussed in the First and Second Annual Groundwater Monitoring in the winter of 2018 with the first detection monitoring groundwater sampling event completed in April 2018, then twice annually thereafter. The results of detection monitoring at the LOS CCR Landfill in 2018, 2019, 2020, and 2021 were presented and discussed in the Second, Third, Fourth, and Fifth Annual Groundwater Monitoring and Corrective Action Reports (AECOM 2019); January 31, 2020 (AECOM 2021); and January 31, 2022 (AECOM 2022a) respectively.

3. CCR Groundwater Monitoring and Corrective Action Activities in 2022

This section summarizes the groundwater monitoring and corrective action conducted at the LOS CCR Landfill in 2022 to comply with the groundwater requirements of the CCR rule:

- Groundwater Detection monitoring activities:
 - monitoring system evaluation completed in June and October 2022
 - groundwater sampling completed in June and October 2022
 - laboratory analysis of groundwater samples in June and October 2022
 - statistical analysis of the monitoring results of the groundwater samples in June and October 2022
- Groundwater Corrective Action Not applicable
- Expansion of monitoring well network included installation of two monitoring wells (MW-2016-12 and MW-2016-13)
- Abandonment of existing network monitoring wells including MW-2016-1, MW-2016-4, MW-2016-5, and MW-2016-7 in October.

Further details concerning each of these activities, including a brief discussion of work completed during the reporting period, are provided below.

Detection Monitoring Activities

Monitoring System Evaluation

As described in the CCR Groundwater Monitoring System Report (AECOM 2017), monitoring wells were installed around the CCR unit at LOS with appropriate total depth and placement of the well screen to: (1) facilitate collection of representative groundwater samples from the uppermost aquifer; and (2) accurately measure water table elevations to support evaluation of groundwater gradient and flow direction. All monitoring wells comprising the LOS CCR Landfill monitoring system were found to be in good condition during the detection monitoring events conducted in 2022.

Potentiometric surface maps constructed using the depth-to-groundwater measurements obtained at the beginning of each detection monitoring event are presented in **Attachment A**. The direction of groundwater flow observed in June and October 2022 was generally north-northeast, which is consistent with the direction observed in previous years. The flow direction supports the designation of the wells noted in Section 2 above to represent background groundwater quality and the quality of groundwater downgradient of the unit.

Groundwater Sampling and Analysis

The detection monitoring events completed in 2022 included analysis of collected groundwater samples for the constituents listed in Part 257 Appendix III. The tabulated laboratory analytical results are presented in **Attachment A** along with potentiometric surface maps for the uppermost aquifer, inferred groundwater flow direction and estimated velocities, and a tabulated summary of field measurements.

Sampling and analysis in 2022 was performed in general accordance with procedures established in the Sampling and Analysis Plan, Revision 1 (AECOM 2022b).

Two monitoring wells were installed between October 2 and 6, 2022 to evaluate the uppermost aquifer northwest of the existing landfill in preparation for a planned expansion into this area. A copy of the boring log and well diagram for both monitoring wells is provided as **Attachment B**. Baseline groundwater monitoring events are expected to begin in spring of 2023 with analysis for the constituents listed in Part 257 Appendix III and Appendix IV.

Four existing monitoring wells were abandoned in September and early October 2022 in preparation for the anticipated landfill expansion. The abandoned wells included MW-2016-1 and MW-2016-7, both of which have historically been excluded from Detection monitoring as discussed in Section 2, along with monitoring wells MW-2016-4 and MW-2016-5. Monitoring wells MW-2016-4 and MW-2016-5 were removed as they were located in the footprint of the landfill expansion.

Statistical Procedures and Analysis

The cumulative groundwater data collected for Appendix III indicator parameters at the LOS CCR Landfill were evaluated in accordance with the statistical procedures certified on October 17, 2017 (AECOM 2017). The Appendix III groundwater quality data were evaluated to determine whether any constituents showed a statistically significant increase (SSI) over background using an interwell approach that statistically compared constituent concentrations at downgradient monitoring wells to those present at the background monitoring wells. ProUCL Version 5.1 was selected for the development of site-specific background upper prediction limits (UPLs) with a 95-percent confidence for each Appendix III constituent utilizing monitoring well data from background monitoring wells collected between September 2016 and October 2020. The input file used for development of the UPLs is provided as **Attachment C**. A lower prediction limit (LPL) was also developed for pH which is a two-sided parameter. The concentrations of detected Appendix III constituents were entered as reported by the laboratory [non-detections set to Reporting Limit (RL)] and evaluated using ProUCL to determine if the population exhibited a normal, lognormal, or nonparametric distribution.

Data from the downgradient monitoring wells during the 2022 reporting period were compared to the UPL or LPL to identify statistically significant increases (SSIs) over background. Statistical analysis for the current reporting period compares compliance well data to UPLs, where non-detect values are represented as one-half the method detection limit. The results of the analyses, including the UPLs and LPL for pH, are provided in **Table 1**. The statistical analysis results indicate that calcium, chloride, pH, sulfate and total dissolved solids (TDS) do not currently exhibit SSIs over background. pH also does not exhibit an SSI below background as presented in **Table 2**.

Boron was evaluated using a control chart and upper and lower control limits were developed using the mean ± 4.5 standard deviations. Starks (1988); USEPA (2009), and ASTM (2017) suggest using 4.5 standard deviations to develop control limits for groundwater detection monitoring. **Figure 1** presents the control chart that shows the background mean (0.256 milligrams per liter [mg/L]), upper and lower control limits (UCL and LCL), 0.341 and 0.171 mg/L, respectively, and the baseline and detection monitoring results for downgradient compliance wells through October 2022. The results indicate that boron does not exceed the UCL at monitoring wells for any sampling event and does not currently exhibit a SSI over background at any of the downgradient compliance wells.

Based on these results, no SSIs were identified at the LOS Landfill and Assessment monitoring is not required. and Detection monitoring should continue at the LOS Landfill in 2023.

4. General Information

The following subsections summarize any problems encountered in the LOS CCR Landfill program through 2022, any resolutions to those problems, if needed, and upcoming actions planned for 2023.

Program Transitions 2022

There were no groundwater monitoring program transitions for the LOS CCR Landfill monitoring system during the January–December 2022 reporting period.

Problems Encountered

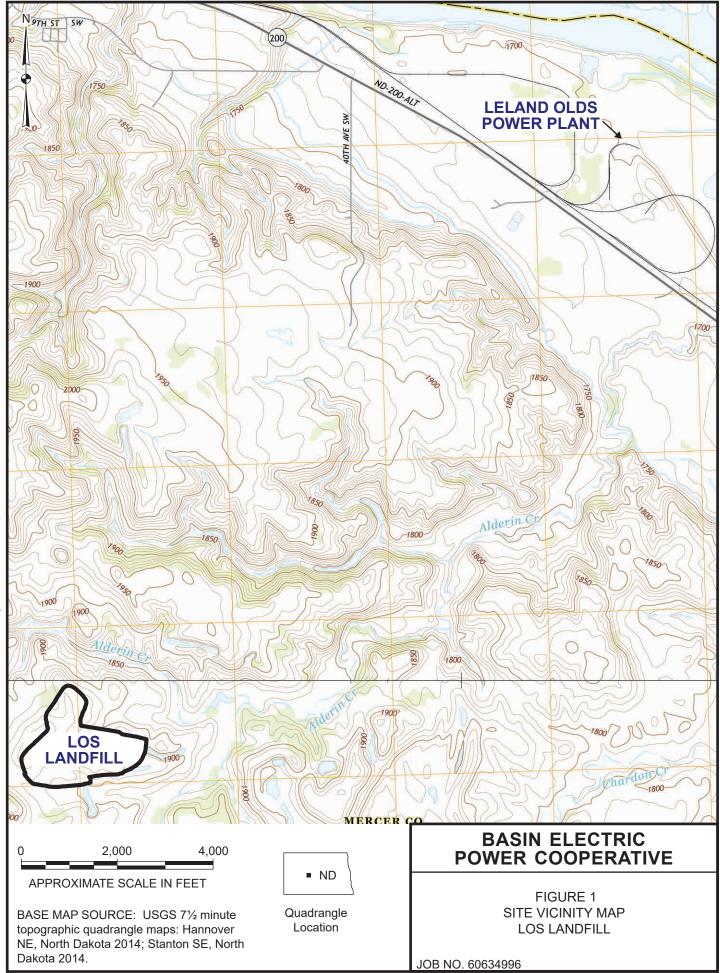
No problems were encountered during the December–January 2022 monitoring period.

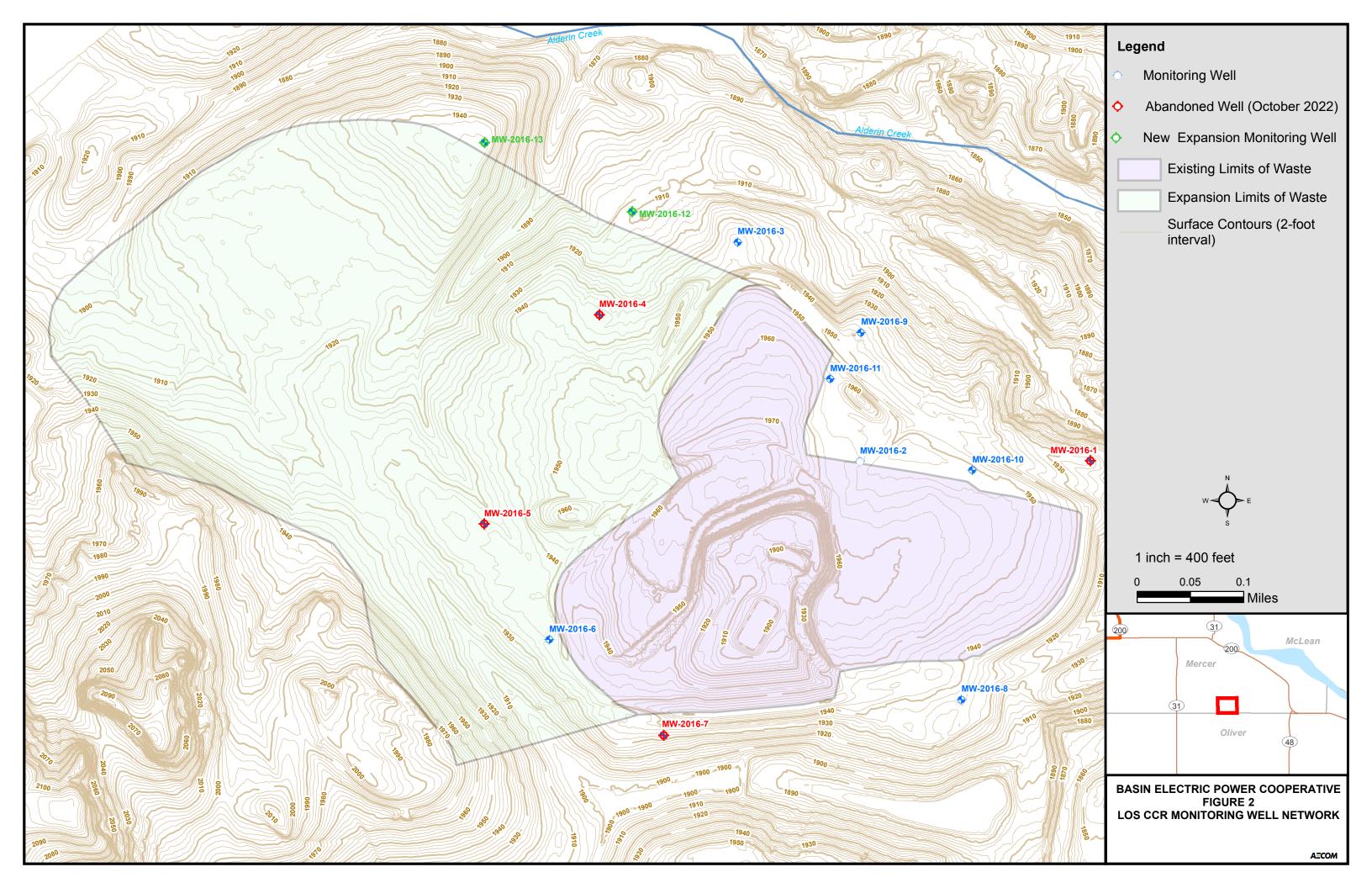
Actions Planned for 2023

Basin plans on continuing the Detection monitoring program for the LOS Landfill in 2023. The Detection monitoring program will include semi-annual groundwater sampling events and the required statistical evaluations.

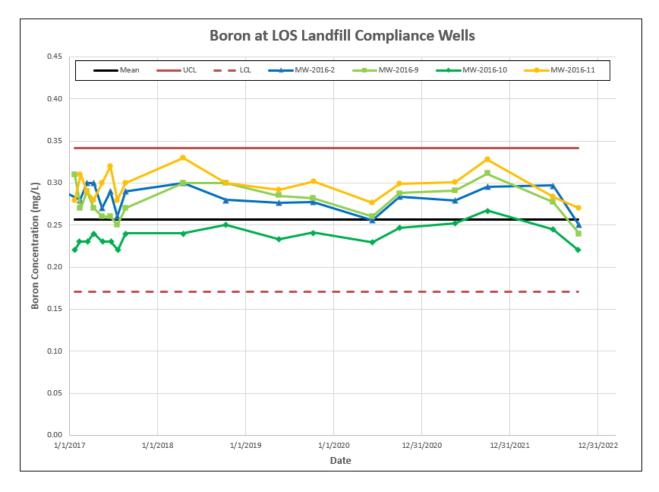
Basin plans to begin baseline sampling of the two newly installed wells downgradient of the proposed expansion area for groundwater analysis of the CCR Rule Part 257 Appendix III and Appendix IV constituents. This will include statistical evaluations of each sampling event to obtain information about background water quality prior to acceptance of CCR material into the landfill expansion area.

5. Summary and Conclusions


Basin conducted two rounds of CCR groundwater detection monitoring at the LOS CCR Landfill between January and December 2022. The results were used to establish background groundwater quality for Appendix III constituents in the uppermost aquifer, identify appropriate UPLs and LPLs, and determine whether any Appendix III constituents experienced SSIs downgradient of the CCR unit.


The statistical analysis results indicate that none of the Appendix III constituents had SSIs over background or statistically significant increasing trends in constituent concentrations. Based on these results, assessment monitoring is not required at the LOS CCR Landfill and Detection monitoring will continue at the site in 2023.

6. References


- AECOM Technical Services, Inc. (AECOM). 2017. CCR Groundwater Monitoring System Report, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. October 2017.
- AECOM. 2018a. Sampling and Analysis Plan, CCR Monitoring Program, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. January 2018.
- AECOM. 2018b. First Annual Groundwater Monitoring and Corrective Action Report, 2016-2017, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. January 2018.
- AECOM. 2019. Second Annual Groundwater Monitoring and Corrective Action Report, 2018, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. January 2019.
- AECOM. 2020. Third Annual Groundwater Monitoring and Corrective Action Report, 2019, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. January 2020.
- AECOM. 2021. Fourth Annual Groundwater Monitoring and Corrective Action Report, 2019, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. January 2021.
- AECOM. 2022a. Fifth Annual Groundwater Monitoring and Corrective Action Report, 2019, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. January 2021.
- AECOM. 2022b. Sampling and Analysis Plan, Revision 1, CCR Monitoring Program, Leland Olds Station, Stanton, North Dakota. Basin Electric Power Cooperative. June 2022.
- American Society of Testing and Materials. 2017. Designation D6312-17 Standard Guide for Developing Appropriate Statistical Approaches for Groundwater Detection Monitoring Programs at Waste Disposal Facilities, 15 pp.
- Starks, T. H. 1988, Evaluation of Control Chart Methodologies for RCRA Waste Sites, U.S. Environmental Protection Agency EPA/600/4-88/040, December, 40 pp.
- U.S. Environmental Protection Agency. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Unified Guidance. EPA 530-R-09-007. March 2009. 884 pp.

Figures

Figure 3. Boron Control Chart for October 2022 2022 Annual Groundwater Monitoring and Corrective Action Report Leland Olds Station CCR Landfill, North Dakota

Tables

Table 1. Background Upper Prediction Limits (UPLs) or Control Limits2022 Annual Groundwater Monitoring and Corrective Action ReportLeland Olds Station CCR Landfill, North Dakota

Parameter (Units)	Number of Samples	Percent Nondetects	Normal or Lognormal Distribution?	Statistical Method	Background Prediction or Control Limit
Boron (mg/L)	71	0 Yes/Yes		Control Chart 99.9% UCL	0.331
Calcium (mg/L)	70	0	No/Yes	Parametric 95% UPL	20.79
Chloride (mg/L)	71	8no.5	No/No	Nonparametric 95% UPL	38.16
Fluoride (mg/L)	70	41 No/No Nonparametric 95% UPL		2.5	
pH (std units)	83	0	No/No	Nonparametric 95% LPL/UPL	7.25/8.24
Sulfate (mg/L)	71	0	No/No	Nonparametric 95% UPL	741
TDS (mg/L)	71	0	No/No	Nonparametric 95% UPL	2,200

Notes:

Background Prediction limits calculated using data from May 2016 through October 2020 pH has both an LPL and UPL; all other constituents only have an UPL or UCL.

mg/L= milligrams per liter

TDS = total dissolved solids

UCL = Upper Control Limit

LPL = Lower Control Limit

Table 2. Statistical Method Analysis Results2022 Annual Groundwater Monitoring and Corrective Action ReportLeland Olds Station CCR Landfill, North Dakota

Well	Location	В	Ca	CI	F	pH (LPL/UPL)	SO₄	TDS
		-			-			
MW-2016-2	Downgradient							
MW-2016-9	Downgradient							
MW-2016-10	Downgradient							
MW-2016-11	Downgradient							
Notes:	Notes:							
	ng interwell upper pre ckground monitoring w		, ,	0	0		V-2016-6,	
	Less than or equal to	background ι	pper predict	ion limit (UPL) or greater t	han lower predic	ction limit (LPL	.) for pH
	Unverified statistical	lysignificant	increase (SSI)	over backgro	ound UPL or b	elow backgroun	d LPL for pH	
	Verified SSI over back	ground UPL o	r below back	ground LPL for	r pH			

Attachment A Sampling and Analysis Report, 2022

2022 Groundwater Sampling and Analysis Report LOS CCR Landfill Monitoring Program

Leland Olds Station Stanton, North Dakota

Basin Electric Power Cooperative

January 31, 2023

Prepared for: Basin Electric Power Cooperative Bismarck, North Dakota

Prepared by: AECOM 525 Vine Street Suite 1800 Cincinnati, OH 45202 aecom.com

Project #60634996

Table of Contents

List of A	Acronyms	ii
	Introduction	
2.	Groundwater Flow	2
3.	Groundwater Quality	3

Figures

Figure 1	LOS CCR Monitoring Well Network and Potentiometric Surface Map June 28, 2022
Figure 2	LOS CCR Monitoring Well Network October 11, 2022

Tables

June 2022 Groundwater Monitoring Water Levels and Elevations
October 2022 Groundwater Monitoring Water Levels and Elevations
Estimated Groundwater Gradient and Seepage Velocity, CCR Program Monitoring Wells
2022 Analytical Results Summary

Appendix

Appendix I Laboratory Reports

List of Acronyms

AECOM	AECOM Technical Services, Inc.
Basin	Basin Electric Power Cooperative
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
EPA	United States Environmental Protection Agency
LOS	Leland Olds Station

1. Introduction

On behalf of Basin Electric Power Cooperative (Basin), AECOM Technical Services, Inc. (AECOM) prepared this Coal Combustion Residuals (CCR) Groundwater Sampling and Analysis Report for the Basin Leland Olds Station (LOS) CCR Landfill.

This Report was prepared to present the results of sampling and analysis of groundwater conducted for the monitoring requirements of the United States Environmental Protection Agency (EPA) CCR rule (Chapter 40 of the Code of Federal Regulations (CFR), Sections 257.90 to 257.98). Specifically, the report presents the data collected for the two groundwater Detection monitoring events conducted in 2022.

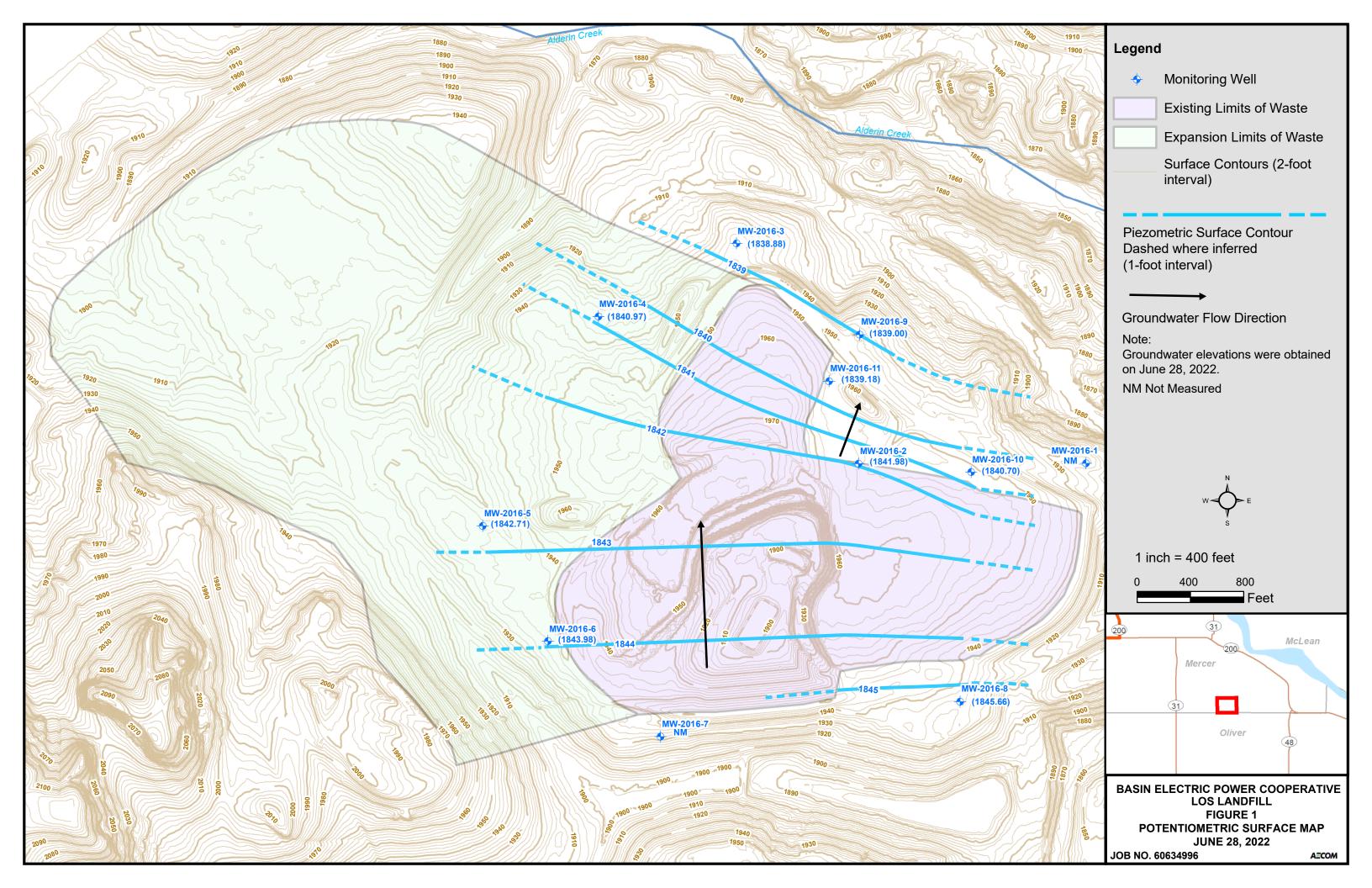
2. Groundwater Flow

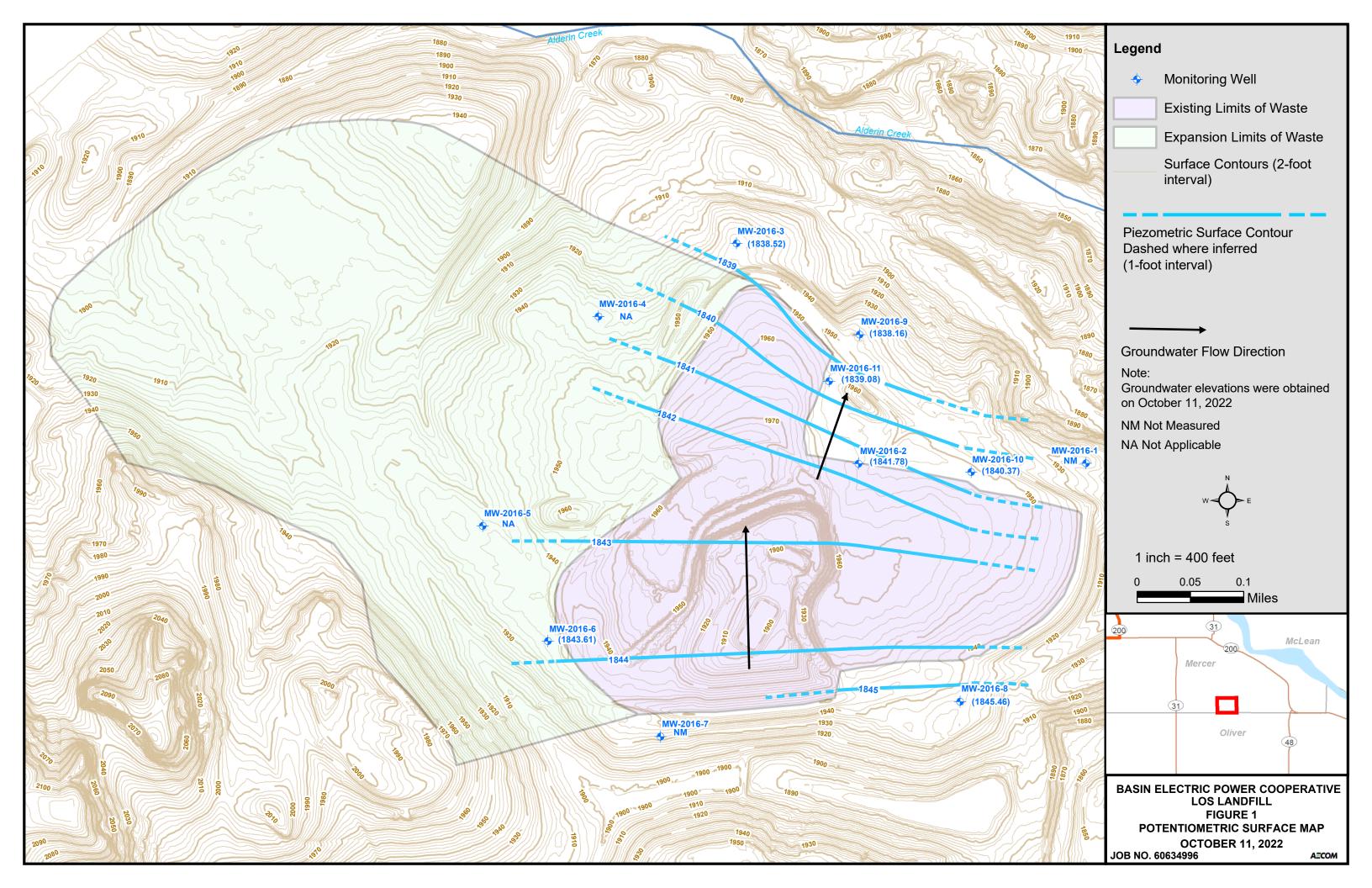
As required by 40 CFR Section 257.93(c), groundwater elevations were measured in each well prior to purging, each time groundwater was sampled. The measurements, presented in **Tables 1A and 1B**, were used to create potentiometric surface maps for the uppermost aquifer for the Detection monitoring events. The resulting potentiometric surface maps were used to evaluate the direction and rate of groundwater flow across the subject CCR unit. **Figure 1** and **Figure 2** represent potentiometric surface maps and show the inferred groundwater flow directions for the CCR unit, which are generally consistent with the patterns observed during previous monitoring events. Calculated groundwater flow velocities are summarized in **Table 2**.

Based on the groundwater flow conditions documented in this chapter, the relative functions of the monitoring wells employed in the LOS CCR Landfill groundwater monitoring system are as follows:

CCR unit	Background wells	Downgradient wells					
Active Landfill	MW-2016-3, MW-2016-4*,	MW-2016-2, MW-2016-9,					
	MW-2016-5*, MW-2016-6,	MW-2016-10, MW-2016-11					
	MW-2016-8						
Landfill Expansion Area	See Above	MW-2016-12, MW-2016-13					
* shandanad Fall 2022 in							

*= abandoned Fall 2022 in


preparation of landfill expansion


Monitoring wells MW-2016-1 and MW-2016-7 were omitted from the LOS CCR Landfill program monitoring network following conclusion of the baseline monitoring period in 2017 and had only been used occasionally for water level gauging. These two wells along with monitoring wells MW-2016-4, and MW-2016-5 were decommissioned in late September to early October 2022 in preparation for landfill expansion. MW-2016-1 and MW-2016-7 were not gauged during either monitoring event in 2022. MW-2016-4 and MW-2016-5 were included in the LOS CCR Landfill program monitoring and were gauged and sampled during the June 2022 event but were abandoned prior to the sampling event in October 2022.

3. Groundwater Quality

The analytical testing laboratory reports for the 2022 monitoring events as presented in **Appendix I** were reviewed for completeness against the project-required methods and the chain-of-custody forms. Laboratory reports were also reviewed for holding times, and that the data was appropriately flagged based on the quality assurance/quality control testing results provided by the laboratory. The results were compiled into a summary form as presented in **Table 3**.

Figures

Tables

Table 1AJune 2022 Groundwater Monitoring Water Levels and ElevationsCCR Program Monitoring WellsLeland Olds Station CCR Landfill- Stanton, North Dakota

	Reference Elevation	June 28, 2022	Groundwater Elevation			
	Top of Casing	Depth to Water				
Well ID	(feet, NAVD 88)	(feet)	(feet, NAVD 88)			
MW-2016-1	1931.73	Not Measured	Not Measured			
MW-2016-2	1957.98	116	1841.98			
MW-2016-3	1939.88	101	1838.88			
MW-2016-4	1939.97	99	1840.97			
MW-2016-5	1937.54	94.83	1842.71			
MW-2016-6	1939.31	95.33	1843.98			
MW-2016-7	1936.11	Not Measured	Not Measured			
MW-2016-8	1939.361	93.70	1845.66			
MW-2016-9	1947.392	108.39	1839.00			
MW-2016-10	1953.315	112.62	1840.70			
MW-2016-11	1956.73	117.55	1839.18			

Notes:

NAVD 88 = North American Vertical Datum 1988

Table 1BOctober 2022 Groundwater Monitoring Water Levels and ElevationsCCR Program Monitoring WellsLeland Olds Station CCR Landfill- Stanton, North Dakota

	Reference Elevation	October 11, 2022	Groundwater			
	Top of Casing	Depth to Water	Elevation			
Well ID	(feet, NAVD 88)	(feet)	(feet, NAVD 88)			
MW-2016-1	1931.73	Abandoned	Not Measured			
MW-2016-2	1957.98	116.2	1841.78			
MW-2016-3	1939.88	101.36	1838.52			
MW-2016-4	1939.97	Abandoned	Not Measured			
MW-2016-5	1937.54	Abandoned	Not Measured			
MW-2016-6	1939.31	95.7	1843.61			
MW-2016-7	1936.11	Abandoned	Not Measured			
MW-2016-8	1939.361	93.90	1845.46			
MW-2016-9	1947.392	109.23	1838.16			
MW-2016-10	1953.315	112.95	1840.37			
MW-2016-11	1956.73	117.65	1839.08			

Notes:

NAVD 88 = North American Vertical Datum 1988

TABLE 2

ESTIMATED GROUNDWATER GRADIENT AND SEEPAGE VELOCITY CCR PROGRAM MONITORING WELLS

Date of event	dı (ft)	dh (ft)	i (ft/ft)	ne	K (ft/day)	v₅ (ft/day)	
9/27/2016	680	4	5.88E-03	0.185	0.0344	1.09E-03	
2/13/2017	680	3	4.41E-03	0.185	0.0344	8.20E-04	
3/16/2017	600	4	6.67E-03	0.185	0.0344	1.24E-03	
4/11/2017	600	3	5.00E-03	0.185	0.0344	9.30E-04	
5/17/2017	920	4	4.35E-03	0.185	0.0344	8.08E-04	
6/20/2017	880	4	4.55E-03	0.185	0.0344	8.45E-04	
7/18/2017	960	6	6.25E-03	0.185	0.0344	1.16E-03	
8/21/2017	960	5	5.21E-03	0.185	0.0344	9.68E-04	
4/18/2018	800	4	5.00E-03	0.185	0.0344	9.30E-04	
10/11/2018	960	3	3.13E-03	0.185	0.0344	5.81E-04	
5/20/2019	800	2	2.50E-03	0.185	0.0344	4.65E-04	
10/8/2019	1080	4	3.70E-03	0.185	0.0344	6.89E-04	
6/9/2020	800	2	2.50E-03	0.185	0.0344	4.65E-04	
9/30/2020	640	2	3.13E-03	0.185	0.0344	5.81E-04	
5/17/2021	740	2	2.70E-03	0.185	0.0344	5.03E-04	
9/27/2021	1290	2	1.55E-03	0.185	0.0344	2.88E-04	
6/28/2022	1700	5	2.92E-03	0.185	0.0344	5.43E-04	
10/11/2022	1700	5	2.99E-03	0.185	0.0344	5.57E-04	

LELAND OLDS STATION CCR LANDFILL - STANTON, NORTH DAKOTA

d_I = Horizontal separation between upgradient and downgradient locations perpendicular to potentiometric contours

d_h = Change in hydraulic head between upgradient and downgradient locations

i = Hydraulic gradient (change in elevation over distance)

 n_e = Site average porosity of 18.5%

K = Site average hydraulic conductivity of 3.44 E-02 ft/day from slug and pumping tests at site

 v_s = Seepage Velocity (ft/day)

Hydraulic Gradient Governing Equation¹ – $i = -\frac{dh}{dl}$

Seepage Velocity Governing Equation² –

1. In textbook form, d_h is a negative number as hydraulic head is reported as the higher value subtracted from the lower value.

 $v_s = -K * i / n_e$

2. Negative operation performed as in textbook form, hydraulic gradient is negative.

Table 3

2022 Analytical Results Summary LOS Landfill CCR Monitoring Well Network Leland Olds Station - Stanton North Dakota

			Appendix III Constituents													
			Boron		Calcium		Chloride		Fluoride		рН		Sulfate		Total Dissolved Solids	
Well ID	Event	Date	mg/l	-	mg/L		mg/L		mg/L		SU		mg/L		mg/L	
MW-2016-2	June 2022		0.297		6.88		21.8		< 0.500	U	7.65		246	<u> </u>	1630	Н
	•	6/29/2022					-	F1	< 0.500	-			246	F1		
MW-2016-3	June 2022	6/29/2022	0.259		4.71		36.1	F1	0.576	F1	7.78		39.1		1480	H
MW-2016-4	June 2022	6/28/2022	0.25		5.17		15.6		0.565		8.05		394		1660	Н
MW-2016-5	June 2022	6/29/2022	0.257		7.14		7.18		0.535		7.71		613		1900	Н
MW-2016-6	June 2022	6/29/2022	0.281		8.56		5.99		< 0.500	U	7.77		705		2070	Н
MW-2016-8	June 2022	6/28/2022	0.27		12.9		8.22		< 0.500	U	7.85		735		2220	H
MW-2016-9	June 2022	6/29/2022	0.277		6.43		18.9		< 0.500	U	7.61		211		1680	H
MW-2016-10	June 2022	6/29/2022	0.245		5.48		13.7		< 0.500	U	7.81		356		1690	Н
MW-2016-10 (Dup)	June 2022	6/29/2022	0.252		5.68		13.6		< 0.500	U	7.81		355		1680	Н
MW-2016-11	June 2022	6/29/2022	0.284		8.57		12.5		< 0.500	U	7.66		291		1740	Н
MW-2016-2	October 2022	10/12/22	0.25		9.40		15.9		0.53		7.59		334		1730	
MW-2016-3	October 2022	10/11/22	0.22		5.09		36.5		0.69		8.04		45.2		1470	
MW-2016-6	October 2022	10/11/22	0.24		8.55		9.3		0.48		7.85		637		2070	
MW-2016-8	October 2022	10/11/22	0.22		12.8		11.6		0.37		7.89		697		2270	
MW-2016-8 (Dup)	October 2022	10/11/22	0.24		13.5		11.5		0.36		7.89		741		2300	
MW-2016-9	October 2022	10/12/22	0.24		6.67		20.8		0.54		7.9		176		1670	
MW-2016-10	October 2022	10/11/22	0.22		5.89		16.2		0.61		8.06		340		1680	
MW-2016-11	October 2022	10/12/22	0.27		6.99		21.6		0.56		7.92		241		1600	

Notes:

mg/L = milligrams per liter S.U. = Standard units

< = less than

H = Sample was prepped or analyzed beyond the specified holding time

U = Non detect

F1 = MS and/or MSD recovery exceeds control limits

Appendix I

Laboratory Reports

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

Laboratory Job ID: 280-164042-1

Laboratory Sample Delivery Group: LOS Landfill Client Project/Site: CCR Groundwater - ND Sites - LOS Landfill

For:

..... LINKS

Review your project results through

EOL

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Basin Electric Power Cooperative 1717 E Interstate Ave Bismarck, North Dakota 58504

Attn: Aaron Knutson

Shelby Twiner

Shelby Turner, Project Manager I (303)736-0100 Shelby.Turner@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Authorized for release by: 7/20/2022 12:11:48 PM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	6
Method Summary	8
Sample Summary	9
Client Sample Results	10
QC Sample Results	13
QC Association	17
Chronicle	19
Certification Summary	22
Chain of Custody	23
Receipt Checklists	25

3

Qualifiers

General Chemistry

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
н	Sample was prepped or analyzed beyond the specified holding time
п 	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 280-164042-1

Laboratory: Eurofins Denver

Narrative

CASE NARRATIVE

Client: Basin Electric Power Cooperative

Project: CCR Groundwater - ND Sites - LOS Landfill

Report Number: 280-164042-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

<u>RECEIPT</u>

The samples were received on 7/5/2022 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 19.4° C.

The following samples were received at the laboratory outside the required temperature criteria at 19.4C: MW-2016-6 (280-164042-1), MW-2016-8 (280-164042-2), MW-2016-3 (280-164042-3), MW-2016-5 (280-164042-4), MW-2016-4 (280-164042-5), MW-2016-10 (280-164042-6), MW-2016-9 (280-164042-7), MW-2016-11 (280-164042-8), MW-2016-2 (280-164042-9) and DUP (280-164042-10). This does not meet regulatory requirements. The client was notified on 7/5/22 and instructed the laboratory to proceed with analysis.

The following samples were received with limited hold time remaining for 2540C TDS analysis: MW-2016-6 (280-164042-1), MW-2016-8 (280-164042-2), MW-2016-3 (280-164042-3), MW-2016-5 (280-164042-4), MW-2016-4 (280-164042-5), MW-2016-10 (280-164042-6), MW-2016-9 (280-164042-7), MW-2016-11 (280-164042-8), MW-2016-2 (280-164042-9) and DUP (280-164042-10). The samples were collected on 6/28/22 and 6/29/22 and received at the laboratory on 7/5/22. Hold time expires on 7/5/22 at 23:59 for the samples collected on 6/28/22. Hold time expires on 7/6/22 at 23:59 for the samples collected on 6/29/22. The laboratory will proceed with analysis.

TOTAL RECOVERABLE METALS

Samples MW-2016-6 (280-164042-1), MW-2016-8 (280-164042-2), MW-2016-3 (280-164042-3), MW-2016-5 (280-164042-4), MW-2016-4 (280-164042-5), MW-2016-10 (280-164042-6), MW-2016-9 (280-164042-7), MW-2016-11 (280-164042-8), MW-2016-2 (280-164042-9) and DUP (280-164042-10) were analyzed for Total Recoverable Metals in accordance with EPA SW-846 Method 6010C. The samples were prepared on 07/18/2022 and analyzed on 07/18/2022 and 07/19/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL DISSOLVED SOLIDS

Samples MW-2016-6 (280-164042-1), MW-2016-8 (280-164042-2), MW-2016-3 (280-164042-3), MW-2016-5 (280-164042-4), MW-2016-4 (280-164042-5), MW-2016-10 (280-164042-6), MW-2016-9 (280-164042-7), MW-2016-11 (280-164042-8), MW-2016-2 (280-164042-9) and DUP (280-164042-10) were analyzed for total dissolved solids in accordance with SM20 2540C. The samples were analyzed on 07/07/2022.

The following samples were received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less: MW-2016-6 (280-164042-1), MW-2016-8 (280-164042-2), MW-2016-3 (280-164042-3), MW-2016-5 (280-164042-4), MW-2016-4 (280-164042-5), MW-2016-10 (280-164042-6), MW-2016-9 (280-164042-7), MW-2016-11

Job ID: 280-164042-1 (Continued)

Laboratory: Eurofins Denver (Continued)

(280-164042-8), MW-2016-2 (280-164042-9), and DUP (280-164042-10). As such, the laboratory had insufficient time remaining to perform the analysis within holding time.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS (28 DAYS)

Samples MW-2016-6 (280-164042-1), MW-2016-8 (280-164042-2), MW-2016-3 (280-164042-3), MW-2016-5 (280-164042-4), MW-2016-4 (280-164042-5), MW-2016-10 (280-164042-6), MW-2016-9 (280-164042-7), MW-2016-11 (280-164042-8), MW-2016-2 (280-164042-9) and DUP (280-164042-10) were analyzed for anions (28 days) in accordance with EPA SW-846 Method 9056A (28 Days). The samples were analyzed on 07/06/2022 and 07/07/2022.

Chloride and Sulfate failed the recovery criteria high for the MS of sample MW-2016-3 (280-164042-3) in batch 280-580064. Chloride, Fluoride and Sulfate failed the recovery criteria high for the MSD of sample MW-2016-3 (280-164042-3) in batch 280-580064. Refer to the QC report for details.

Due to the high concentration of chloride, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 280-580064 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Samples MW-2016-6 (280-164042-1)[10X], MW-2016-8 (280-164042-2)[10X], MW-2016-5 (280-164042-4)[5X], MW-2016-4 (280-164042-5)[5X], MW-2016-10 (280-164042-6)[5X], MW-2016-9 (280-164042-7)[5X], MW-2016-11 (280-164042-8)[5X], MW-2016-2 (280-164042-9)[5X] and DUP (280-164042-10)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Client Sample ID: MW-2016-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Boron	281	100	ug/L	1	6010C	Total
						Recoverable
Calcium	8560	200	ug/L	1	6010C	Total
						Recoverable
Chloride	5.99	3.00	mg/L	1	9056A	Total/NA
Sulfate	705	50.0	mg/L	10	9056A	Total/NA
Total Dissolved Solids (TDS)	2070 H	20.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2016-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Туре
Boron	270	100	ug/L		6010C	Total
						Recoverable
Calcium	12900	200	ug/L	1	6010C	Total
						Recoverable
Chloride	8.22	3.00	mg/L	1	9056A	Total/NA
Sulfate	735	50.0	mg/L	10	9056A	Total/NA
Total Dissolved Solids (TDS)	2220 H	40.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2016-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Boron	259		100		ug/L	1	6010C	Total
								Recoverable
Calcium	4710		200		ug/L	1	6010C	Total
								Recoverable
Chloride	36.1	F1	3.00		mg/L	1	9056A	Total/NA
Fluoride	0.576	F1	0.500		mg/L	1	9056A	Total/NA
Sulfate	39.1	F1	5.00		mg/L	1	9056A	Total/NA
Total Dissolved Solids (TDS)	1480	н	20.0		mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2016-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	257		100		ug/L	1	_	6010C	Total
									Recoverable
Calcium	7140		200		ug/L	1		6010C	Total
									Recoverable
Chloride	7.18		3.00		mg/L	1		9056A	Total/NA
Fluoride	0.535		0.500		mg/L	1		9056A	Total/NA
Sulfate	613		25.0		mg/L	5		9056A	Total/NA
Total Dissolved Solids (TDS)	1900	н	20.0		mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-2016-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Boron	250	100	ug/L	1	6010C	Total
						Recoverable
Calcium	5170	200	ug/L	1	6010C	Total
						Recoverable
Chloride	15.6	3.00	mg/L	1	9056A	Total/NA
Fluoride	0.565	0.500	mg/L	1	9056A	Total/NA
Sulfate	394	25.0	mg/L	5	9056A	Total/NA
Total Dissolved Solids (TDS)	1660 H	20.0	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Denver

5

Lab Sample ID: 280-164042-2

Lab Sample ID: 280-164042-3

Lab Sample ID: 280-164042-4

Lab Sample ID: 280-164042-5

Lab Sample ID: 280-164042-1

Detection Summary

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Client Sample ID: MW-2016-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Boron	245	100	ug/L	1	6010C	Total
						Recoverable
Calcium	5480	200	ug/L	1	6010C	Total
						Recoverable
Chloride	13.7	3.00	mg/L	1	9056A	Total/NA
Sulfate	356	25.0	mg/L	5	9056A	Total/NA
Total Dissolved Solids (TDS)	1690 H	20.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2016-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Ргер Туре
Boron	277	100	ug/L		6010C	Total
						Recoverable
Calcium	6430	200	ug/L	1	6010C	Total
						Recoverable
Chloride	18.9	3.00	mg/L	1	9056A	Total/NA
Sulfate	211	25.0	mg/L	5	9056A	Total/NA
Total Dissolved Solids (TDS)	1680 H	20.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2016-11

Analyte	Result Qu	alifier RL	MDL U	Jnit	Dil Fac	D Method	Prep Type
Boron	284	100	u	ug/L	1	6010C	Total
							Recoverable
Calcium	8570	200	u	ug/L	1	6010C	Total
							Recoverable
Chloride	12.5	3.00	n	ng/L	1	9056A	Total/NA
Sulfate	291	25.0	n	ng/L	5	9056A	Total/NA
Total Dissolved Solids (TDS)	1740 H	20.0	n	ng/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2016-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Ргер Туре
Boron	297	100	ug/L		6010C	Total
						Recoverable
Calcium	6880	200	ug/L	1	6010C	Total
						Recoverable
Chloride	21.8	3.00	mg/L	1	9056A	Total/NA
Sulfate	246	25.0	mg/L	5	9056A	Total/NA
Total Dissolved Solids (TDS)	1630 H	20.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: DUP

Lab Sample ID: 280-164042-10

Lab Sample ID: 280-164042-9

Analyte	Result Qualifie	er RL	MDL Unit	Dil Fac	Method	Prep Type
Boron	252	100	ug/L	1	6010C	Total
						Recoverable
Calcium	5680	200	ug/L	1	6010C	Total
						Recoverable
Chloride	13.6	3.00	mg/L	1	9056A	Total/NA
Sulfate	355	25.0	mg/L	5	9056A	Total/NA
Total Dissolved Solids (TDS)	1680 H	20.0	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 280-164042-1 SDG: LOS Landfill

Method Summary

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL DEN
9056A	Anions, Ion Chromatography	SW846	TAL DEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL DEN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL DEN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Eurofins Denver

Sample Summary

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Job ID: 280-164042-1 SDG: LOS Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
280-164042-1	MW-2016-6	Water	06/29/22 08:35	07/05/22 09:00
280-164042-2	MW-2016-8	Water	06/28/22 10:50	07/05/22 09:00
280-164042-3	MW-2016-3	Water	06/29/22 08:50	07/05/22 09:00
280-164042-4	MW-2016-5	Water	06/29/22 10:30	07/05/22 09:00
280-164042-5	MW-2016-4	Water	06/28/22 14:30	07/05/22 09:00
280-164042-6	MW-2016-10	Water	06/29/22 08:20	07/05/22 09:00
280-164042-7	MW-2016-9	Water	06/29/22 10:45	07/05/22 09:00
280-164042-8	MW-2016-11	Water	06/29/22 11:00	07/05/22 09:00
280-164042-9	MW-2016-2	Water	06/29/22 11:10	07/05/22 09:00
280-164042-10	DUP	Water	06/29/22 08:20	07/05/22 09:00

Client Sample Results

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill Job ID: 280-164042-1 SDG: LOS Landfill

Method: 6010C - Metals (ICP) - Total Recoverable

Client Sample ID: MW-2016-6 Date Collected: 06/29/22 08:35							Lab Sam	ple ID: 280-16 Matrix:	
Date Received: 07/05/22 09:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	281		100		ug/L		07/18/22 08:40	07/18/22 23:48	1
Calcium	8560		200		ug/L		07/18/22 08:40	07/18/22 23:48	1
Client Sample ID: MW-2016-8							Lab Sam	ple ID: 280-16	4042-2
Date Collected: 06/28/22 10:50								Matrix	Water
Date Received: 07/05/22 09:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	270		100		ug/L		07/18/22 08:40	07/18/22 23:52	1
Calcium	12900		200		ug/L		07/18/22 08:40	07/18/22 23:52	1
Client Sample ID: MW-2016-3							Lab Sam	ple ID: 280-16	4042-3
Date Collected: 06/29/22 08:50								Matrix:	
Date Received: 07/05/22 09:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	259		100		ug/L		07/18/22 08:40	07/19/22 00:12	1
Calcium	4710		200		ug/L		07/18/22 08:40	07/19/22 00:12	1
Client Sample ID: MW-2016-5							Lab Sam	ple ID: 280-16	4042-4
Date Collected: 06/29/22 10:30								Matrix:	
Date Received: 07/05/22 09:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	257		100		ug/L		07/18/22 08:40	07/19/22 00:16	1
Calcium	7140		200		ug/L		07/18/22 08:40	07/19/22 00:16	1
Client Sample ID: MW-2016-4							Lab Sam	ple ID: 280-16	4042-5
Date Collected: 06/28/22 14:30								Matrix:	Water
Date Received: 07/05/22 09:00									
Analyte									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	Result 250	Qualifier	RL 100	MDL	Unit ug/L	<u>D</u>	Prepared 07/18/22 08:40	Analyzed 07/19/22 00:20	Dil Fac
		Qualifier		MDL		<u>D</u>	07/18/22 08:40		
Boron	250	Qualifier _	100	MDL	ug/L	<u>D</u>	07/18/22 08:40 07/18/22 08:40	07/19/22 00:20	1 1
Boron Calcium	250	Qualifier _	100	MDL	ug/L	<u>D</u>	07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20	1 1 4042-6
Boron Calcium Client Sample ID: MW-2016-10	250	Qualifier	100	MDL	ug/L	<u>D</u>	07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 07/19/22 00:20	1 1 4042-6
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20	250 5170	Qualifier	100	MDL	ug/L ug/L	D	07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 07/19/22 00:20	1 1 4042-6
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00	250 5170		100 200		ug/L ug/L		07/18/22 08:40 07/18/22 08:40 Lab Sam	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix:	1 1 4 042-6 : Water
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte	250 5170 Result		100 200 RL		ug/L ug/L Unit		07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed	1 1 4042-6 : Water Dil Fac
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron	250 5170 Result 245		100 200 RL 100		ug/L ug/L Unit ug/L		07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24	1 1 24042-6 2 Water Dil Fac 1 1
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium	250 5170 Result 245		100 200 RL 100		ug/L ug/L Unit ug/L		07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24 07/19/22 00:24	1 1 24042-6 2 Water <u>Dil Fac</u> 1 1 1
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-9	250 5170 Result 245		100 200 RL 100		ug/L ug/L Unit ug/L		07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16	1 1 24042-6 2 Water <u>Dil Fac</u> 1 1 1
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45	250 5170 Result 245 5480		100 200 RL 100	MDL	ug/L ug/L Unit ug/L		07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16	1 1 24042-6 2 Water <u>Dil Fac</u> 1 1 1
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00	250 5170 Result 245 5480	Qualifier	100 200 RL 100 200	MDL	ug/L ug/L Unit ug/L ug/L	D	07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: <u>Analyzed</u> 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16 Matrix: <u>Analyzed</u>	1 1 4042-6 2 Water <u>Dil Fac</u> 1 1 4042-7 2 Water
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00 Analyte	250 5170 Result 245 5480 Result	Qualifier	100 200 RL 100 200 RL	MDL	ug/L ug/L Unit ug/L ug/L	D	07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: <u>Analyzed</u> 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16 Matrix: <u>Analyzed</u>	1 1 4042-6 2 Water <u>Dil Fac</u> 1 1 4042-7 2 Water
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00 Analyte Boron	250 5170 Result 245 5480 Result 277	Qualifier	100 200 RL 100 200 RL 100	MDL	Unit ug/L ug/L ug/L Unit ug/L	D	07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:28	1 1 4042-6 : Water 1 1 4042-7 : Water Dil Fac 1 1 1 1
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00 Analyte Boron Calcium	250 5170 Result 245 5480 Result 277	Qualifier	100 200 RL 100 200 RL 100	MDL	Unit ug/L ug/L ug/L Unit ug/L	D	07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: <u>Analyzed</u> 07/19/22 00:24 ple ID: 280-16 Matrix: <u>Analyzed</u> 07/19/22 00:28 07/19/22 00:28	1 1 4042-6 2 Water 1 1 4042-7 2 Water <u>Dil Fac</u> 1 1 5 4042-7 2 Water
Boron Calcium Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00 Analyte Boron Calcium Client Sample ID: MW-2016-11	250 5170 Result 245 5480 Result 277	Qualifier	100 200 RL 100 200 RL 100	MDL	Unit ug/L ug/L ug/L Unit ug/L	D	07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16 07/19/22 00:28 07/19/22 00:28 07/19/22 00:28	1 1 4042-6 2 Water 1 1 4042-7 2 Water <u>Dil Fac</u> 1 1 5 4042-7 2 Water
Boron CalciumClient Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron CalciumClient Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00 Analyte Boron CalciumClient Sample ID: MW-2016-11 Date Collected: 06/29/22 11:00	250 5170 Result 245 5480 Result 277 6430	Qualifier	100 200 RL 100 200 RL 100	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40	07/19/22 00:20 07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16 07/19/22 00:28 07/19/22 00:28 07/19/22 00:28	1 1 4042-6 2 Water 1 1 4042-7 2 Water <u>Dil Fac</u> 1 1 5 4042-7 2 Water
Boron CalciumClient Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00 Analyte Boron CalciumClient Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00 Analyte Boron CalciumClient Sample ID: MW-2016-11 Date Collected: 06/29/22 11:00 Date Collected: 06/29/22 11:00 Date Received: 07/05/22 09:00	250 5170 Result 245 5480 Result 277 6430	Qualifier	100 200 RL 100 200 RL 100 200	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L	D	07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam Prepared 07/18/22 08:40 07/18/22 08:40 Lab Sam	07/19/22 00:20 07/19/22 00:20 07/19/22 00:20 ple ID: 280-16 Matrix: Analyzed 07/19/22 00:24 07/19/22 00:24 ple ID: 280-16 07/19/22 00:28 07/19/22 00:28 ple ID: 280-16 Matrix:	1 1 24042-6 2 Water 1 1 24042-7 2 Water 1 1 1 1 24042-8 2 Water

Eurofins Denver

Client Sample Results

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Total Dissolved Solids (TDS)

Job ID: 280-164042-1 SDG: LOS Landfill

8 9

Method: 6010C - Metals (ICP) - Total Recoverable

	,								
Client Sample ID: MW-2016-2							Lab Sam	ple ID: 280-16	4042-9
Date Collected: 06/29/22 11:10									: Water
Date Received: 07/05/22 09:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	297		100		ug/L		07/18/22 08:40	07/19/22 01:17	1
Calcium	6880		200		ug/L			07/19/22 01:17	1
	0000		200		ug/L		01/10/22 00.40	01110/22 01.11	1
Client Sample ID: DUP							Lab Samp	le ID: 280-164	042-10
Date Collected: 06/29/22 08:20								Matrix	: Water
Date Received: 07/05/22 09:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	252		100		ug/L		07/18/22 08:40	07/19/22 01:37	1
Calcium	5680		200		ug/L		07/18/22 08:40	07/19/22 01:37	1
General Chemistry									
_							Lob Som	nio ID: 290.46	4042.4
Client Sample ID: MW-2016-6							Lap Sam	ple ID: 280-16 Motrix	
Date Collected: 06/29/22 08:35								watrix	: Water
Date Received: 07/05/22 09:00	D 14	0	-		11	_	B	A	D !! F
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	5.99		3.00		mg/L			07/06/22 14:50	1
Fluoride	ND		0.500		mg/L			07/06/22 14:50	1
Sulfate	705		50.0		mg/L			07/06/22 15:06	10
Total Dissolved Solids (TDS)	2070	н	20.0		mg/L			07/07/22 09:54	1
Client Sample ID: MW-2016-8							Lab Sam	ple ID: 280-16	4042-2
Date Collected: 06/28/22 10:50								•	: Water
Date Received: 07/05/22 09:00									· mator
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.22		3.00		mg/L			07/06/22 15:22	1
Fluoride	ND		0.500		mg/L			07/06/22 15:22	1
			50.0		mg/L			07/06/22 15:38	10
Sulfate	735								10
Total Dissolved Solids (TDS)	2220	н	40.0		mg/L			07/07/22 09:54	I
Client Sample ID: MW-2016-3							Lab Sam	ple ID: 280-16	4042-3
Date Collected: 06/29/22 08:50									: Water
Date Received: 07/05/22 09:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fac
Chloride	36.1	F1	3.00	MDL	mg/L	<u>D</u>	Prepared	07/06/22 15:54	
Chloride Fluoride	36.1 0.576	F1 F1	3.00 0.500	MDL	mg/L mg/L	D	Prepared	07/06/22 15:54 07/06/22 15:54	1 1
Chloride Fluoride Sulfate	36.1 0.576 39.1	F1 F1 F1	3.00 0.500 5.00	MDL	mg/L mg/L mg/L	<u>D</u>	Prepared	07/06/22 15:54 07/06/22 15:54 07/06/22 15:54	1
Chloride Fluoride	36.1 0.576	F1 F1 F1	3.00 0.500	MDL	mg/L mg/L	<u>D</u>	Prepared	07/06/22 15:54 07/06/22 15:54	1 1 1
Chloride Fluoride Sulfate	36.1 0.576 39.1	F1 F1 F1	3.00 0.500 5.00	MDL	mg/L mg/L mg/L	<u>D</u>		07/06/22 15:54 07/06/22 15:54 07/06/22 15:54	1 1 1 1
Chloride Fluoride Sulfate Total Dissolved Solids (TDS)	36.1 0.576 39.1	F1 F1 F1	3.00 0.500 5.00	MDL	mg/L mg/L mg/L	<u>D</u>		07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/07/22 09:54 ple ID: 280-16	1 1 1 1
Chloride Fluoride Sulfate Total Dissolved Solids (TDS) Client Sample ID: MW-2016-5	36.1 0.576 39.1	F1 F1 F1	3.00 0.500 5.00	MDL	mg/L mg/L mg/L	<u>D</u>		07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/07/22 09:54 ple ID: 280-16	1 1 1 1 5 4042-4
Chloride Fluoride Sulfate Total Dissolved Solids (TDS) Client Sample ID: MW-2016-5 Date Collected: 06/29/22 10:30	36.1 0.576 39.1 1480	F1 F1 F1	3.00 0.500 5.00	MDL	mg/L mg/L mg/L mg/L	<u>D</u>		07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/07/22 09:54 ple ID: 280-16	1 1 1 1 5 4042-4
Chloride Fluoride Sulfate Total Dissolved Solids (TDS) Client Sample ID: MW-2016-5 Date Collected: 06/29/22 10:30 Date Received: 07/05/22 09:00	36.1 0.576 39.1 1480	F1 F1 F1 H	3.00 0.500 5.00 20.0		mg/L mg/L mg/L mg/L		Lab Sam	07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/07/22 09:54 ple ID: 280-16 Matrix	1 1 1 54042-4 : Water
Chloride Fluoride Sulfate Total Dissolved Solids (TDS) Client Sample ID: MW-2016-5 Date Collected: 06/29/22 10:30 Date Received: 07/05/22 09:00 Analyte	36.1 0.576 39.1 1480 Result	F1 F1 F1 H	3.00 0.500 5.00 20.0 RL		mg/L mg/L mg/L mg/L		Lab Sam	07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/06/22 15:54 07/07/22 09:54 ple ID: 280-16 Matrix Analyzed	1 1 1 54042-4 : Water Dil Fac

07/07/22 09:54

20.0

mg/L

1900 H

1

Client Sample Results

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Sulfate

Total Dissolved Solids (TDS)

5

8

_									
Client Sample ID: MW-2016-4 Date Collected: 06/28/22 14:30 Date Received: 07/05/22 09:00							Lab San	nple ID: 280-16 Matrix	64042-5 : Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15.6		3.00		mg/L		-	07/06/22 18:02	1
Fluoride	0.565		0.500		mg/L			07/06/22 18:02	1
Sulfate	394		25.0		mg/L			07/07/22 17:33	5
Total Dissolved Solids (TDS)	1660	н	20.0		mg/L			07/07/22 09:54	1
Client Sample ID: MW-2016-10							Lab San	nple ID: 280-10	64042-6
Date Collected: 06/29/22 08:20								Matrix	: Water
Date Received: 07/05/22 09:00									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.7		3.00		mg/L			07/06/22 18:18	1
Fluoride	ND		0.500		mg/L			07/06/22 18:18	1
Sulfate	356		25.0		mg/L			07/06/22 18:35	5
Total Dissolved Solids (TDS)	1690	н	20.0		mg/L			07/07/22 09:54	1
Client Sample ID: MW-2016-9							Lab San	ple ID: 280-16	64042-7
Date Collected: 06/29/22 10:45								Matrix	: Water
Date Received: 07/05/22 09:00									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18.9		3.00		mg/L			07/06/22 18:51	1
Fluoride	ND		0.500		mg/L			07/06/22 18:51	1
Sulfate	211		25.0		mg/L			07/07/22 16:45	5
Total Dissolved Solids (TDS)	1680	н	20.0		mg/L			07/07/22 09:54	1
Client Sample ID: MW-2016-11							Lab San	ple ID: 280-16	
Date Collected: 06/29/22 11:00								Matrix	: Water
Date Received: 07/05/22 09:00									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.5		3.00		mg/L			07/06/22 19:07	1
Fluoride	ND		0.500		mg/L			07/06/22 19:07	1
Sulfate	291		25.0		mg/L			07/07/22 17:01	5
Total Dissolved Solids (TDS)	1740	н	20.0		mg/L			07/07/22 09:54	1
Client Sample ID: MW-2016-2							Lab San	ple ID: 280-16	6 <mark>4042-9</mark>
Date Collected: 06/29/22 11:10								Matrix	: Water
Date Received: 07/05/22 09:00									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.8		3.00		mg/L			07/06/22 19:23	1
Fluoride	ND		0.500		mg/L			07/06/22 19:23	1
Sulfate	246		25.0		mg/L			07/07/22 17:17	5
Total Dissolved Solids (TDS)	1630	н	20.0		mg/L			07/07/22 09:54	1
Client Sample ID: DUP							Lab Sam	ole ID: 280-164	
Date Collected: 06/29/22 08:20								Matrix	: Water
Date Received: 07/05/22 09:00									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.6		3.00		mg/L			07/06/22 19:39	1
Fluoride	ND		0.500		mg/L			07/06/22 19:39	1
					0				

Eurofins Denver

07/06/22 19:55

07/07/22 09:54

5

1

25.0

20.0

355

1680 H

mg/L

mg/L

QC Sample Results

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Lab Sample ID: MB 280-58	0851/1-A									С	lie	nt Samp	le ID: Met	hod I	Blank
Matrix: Water											Ρ	rep Type	e: Total Re	cove	rable
Analysis Batch: 581188													Prep Bato	:h: 58	80851
-		ΜВ	MB												
Analyte	Re	sult	Qualifier		RL	I	MDL	Unit		D	Pr	epared	Analyzed	1 1	Dil Fac
Boron		ND			100			ug/L		_ 07	7/18	3/22 08:40	07/18/22 22	:35	1
Calcium		ND			200			ug/L		07	7/18	8/22 08:40	07/18/22 22	:35	1
Lab Sample ID: LCS 280-5	80851/2-A								Clie	ent S	an	nple ID:	Lab Contr	ol Sa	mple
Matrix: Water											Ρ	rep Type	e: Total Re		
Analysis Batch: 581188													Prep Bato	:h: 58	80851
				Spike		LCS	LCS	6					%Rec		
Analyte				Added		Result	Qua	alifier	Unit		D	%Rec	Limits		
Boron				2000		2025			ug/L			101	86 - 110		
Calcium				50000		51710			ug/L			103	90 - 111		
Lab Sample ID: 280-16404	2-8 MS												nple ID: M		
Matrix: Water											Ρ	rep Type	e: Total Re		
Analysis Batch: 581188													Prep Bato	:h: 58	80851
	Sample	San	nple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qua	alifier	Unit	I	D	%Rec	Limits		
Boron	284			2000		2266			ug/L			99	87 - 113		
Calcium	8570			50000		58710			ug/L			100	48 - 153		
Lab Sample ID: 280-16404	2-8 MSD										CI	ient San	nple ID: M	W-20	16-11
Matrix: Water											Ρ	rep Type	e: Total Re	cove	rable
Analysis Batch: 581188													Prep Bato	:h: 58	<mark>80851</mark>
	Sample	San	nple	Spike		MSD	MSI	D					%Rec		RPD
Analyte	Result	Qua	lifier	Added		Result	Qua	alifier	Unit	I	D	%Rec	Limits	RPD	Limit
Boron	284			2000		2271			ug/L			99	87 - 113	0	20
Calcium	8570			50000		58680			ug/L			100	48 - 153	0	20
Lab Sample ID: MB 280-58	0894/1-A									С			ole ID: Met		
Matrix: Water											Ρ	rep Type	e: Total Re		
Analysis Batch: 581188													Prep Bato	:h: 58	3 <mark>0894</mark>
		MB	MB												
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed		Dil Fac
Boron		ND			100			ug/L		07	7/18	3/22 08:40	07/19/22 01	:09	1
Calcium		ND			200			ug/L		07	7/18	3/22 08:40	07/19/22 01	:09	1
Lab Sample ID: LCS 280-5	80894/2-A								Clie	ent S			Lab Contr		
Matrix: Water											Ρ	rep Type	e: Total Re		
Analysis Batch: 581188													Prep Bato	:h: 58	30894
				Spike		LCS	LCS	3					%Rec		
Analyte				Added		Result	Qua	alifier	Unit	!	D		Limits		
Boron				2000		2005			ug/L			100	86 - 110		
Calcium				50000		51480			ug/L			103	90 - 111		
Lab Sample ID: 280-16404	2-9 MS												mple ID: N		
Matrix: Water											Ρ	rep Type	e: Total Re	cove	rable
Analysis Batch: 581188													Prep Bato	:h: 58	8 <mark>0894</mark>
	Sample	San	nple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qua	alifier	Unit	I	D	%Rec	Limits		
Boron	297			2000		2315			ug/L			101	87 - 113		
												400	40 450		

Eurofins Denver

58030

ug/L

102

48 - 153

50000

6880

Calcium

7/20/2022

Job ID: 280-164042-1

SDG: LOS Landfill

QC Sample Results

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

9

Method: 6010C - Metals (ICP)

Lab Sample ID: 280-164042 Matrix: Water	2-9 MSD								ample ID: pe: Total I	Recove	rable
Analysis Batch: 581188									Prep Ba	atch: 58	30894
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Boron	297		2000	2327		ug/L		101	87 - 113	1	20
Calcium	6880		50000	58240		ug/L		103	48 - 153	0	20

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 280-5800	04/0						CIR	ant Sam	ple ID: M		
Matrix: Water									Prep Ty	ре: То	tal/N/
Analysis Batch: 580064	_										
		IB MB									
Analyte	Res	ult Qualifier			MDL Unit		<u>P</u>	repared	Analyz	zed	Dil Fa
Chloride		ND	3.0		mg/L				07/06/22	12:36	
Fluoride	1	ND	0.50	00	mg/L				07/06/22	12:36	
Sulfate	١	ND	5.0	00	mg/L				07/06/22	12:36	
Lab Sample ID: LCS 280-580	064/4					Clier	nt Sa	mple ID	: Lab Cor	ntrol S	ampl
Matrix: Water									Prep Ty		
Analysis Batch: 580064											
· ·····, · · · · · · · · · · · · · · ·			Spike	LCS	LCS				%Rec		
Analyte			Added	-	Qualifier	Unit	D	%Rec	Limits		
Chloride			100	98.69		mg/L		99	90 - 110		
Fluoride			5.00	4.859		mg/L		97	90 - 110		
Sulfate			100	99.78		mg/L		100	90 - 110		
						-					
Lab Sample ID: LCSD 280-58 Matrix: Water	80064/5					Client Sa	mple	ID: Lab	Control S Prep Ty		
Analysis Batch: 580064									перту	pe. 10	
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	
			•			Unit mg/L	D	%Rec 99		RPD	Lim
Analyte Chloride Fluoride			Added	Result	Qualifier		<u>D</u>		Limits		Lim 1
Chloride			Added	Result 98.56	Qualifier	mg/L	<u>D</u>	99	Limits 90 - 110	0	Lim 1 1
Chloride Fluoride Sulfate	0064/3		Added	Result 98.56 4.803	Qualifier	mg/L mg/L mg/L		99 96 100	Limits 90 - 110 90 - 110 90 - 110	0 1 0	Lim 1 1 1
Chloride Fluoride	0064/3		Added	Result 98.56 4.803	Qualifier	mg/L mg/L mg/L		99 96 100	Limits 90 - 110 90 - 110	0 1 0 ntrol S	Lim 1 1 1 ampl
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580	0064/3		Added 100 5.00 100	Result 98.56 4.803 99.66	Qualifier	mg/L mg/L mg/L		99 96 100	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty	0 1 0 ntrol S	Lim 1 1 1 ampl
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064	0064/3		Added 100 5.00 100 Spike	Result 98.56 4.803 99.66 MRL	Qualifier	mg/L mg/L mg/L	nt Sa	99 96 100 mple ID	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec	0 1 0 ntrol S	Limi 1 1 1 1 ample
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte	0064/3		Added 100 5.00 100 Spike Added	Result 98.56 4.803 99.66 MRL Result	Qualifier MRL Qualifier	mg/L mg/L mg/L Clier Unit		99 96 100 mple ID	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec Limits	0 1 0 ntrol S	Limi 1 1 1 1 ample
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064	0064/3		Added 100 5.00 100 Spike Added 5.00	Result 98.56 4.803 99.66 MRL	Qualifier MRL Qualifier	mg/L mg/L mg/L Clier	nt Sa	99 96 100 mple ID	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec	0 1 0 ntrol S	Lim 1 1 1 ampl
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte	0064/3		Added 100 5.00 100 Spike Added	Result 98.56 4.803 99.66 MRL Result	Qualifier MRL Qualifier	mg/L mg/L mg/L Clier Unit	nt Sa	99 96 100 mple ID	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec Limits	0 1 0 ntrol S	Limi 1 1 1 1 ample
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride	0064/3		Added 100 5.00 100 Spike Added 5.00	Result 98.56 4.803 99.66 MRL Result 3.692	Qualifier MRL Qualifier	mg/L mg/L Clier	nt Sa	99 96 100 mple ID %Rec 74	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec Limits 50 - 150	0 1 0 ntrol S	Limi 1 1 1 1 ample
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride Fluoride			Added 100 5.00 100 Spike Added 5.00 0.500	Result 98.56 4.803 99.66 MRL Result 3.692 ND	Qualifier MRL Qualifier	mg/L mg/L Clier Unit mg/L mg/L	D	99 96 100 mple ID %Rec 74 94 72	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec Limits 50 - 150 50 - 150	0 1 0 ntrol S pe: To	Lim 1 1 ample tal/N/
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride Fluoride Sulfate			Added 100 5.00 100 Spike Added 5.00 0.500	Result 98.56 4.803 99.66 MRL Result 3.692 ND	Qualifier MRL Qualifier	mg/L mg/L Clier Unit mg/L mg/L	D	99 96 100 mple ID %Rec 74 94 72	Limits 90 - 110 90 - 110 90 - 110 : Lab Corr Prep Ty %Rec Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	0 1 0 ntrol S pe: To	Lim 1 1 amplo tal/N/
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride Fluoride Sulfate Lab Sample ID: 280-164042-3 Matrix: Water			Added 100 5.00 100 Spike Added 5.00 0.500	Result 98.56 4.803 99.66 MRL Result 3.692 ND	Qualifier MRL Qualifier	mg/L mg/L Clier Unit mg/L mg/L	D	99 96 100 mple ID %Rec 74 94 72	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec Limits 50 - 150 50 - 150 50 - 150	0 1 0 ntrol S pe: To	Limi 1 1 ample tal/N/
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride Fluoride Sulfate Lab Sample ID: 280-164042-3		Sample	Added 100 5.00 100 Spike Added 5.00 0.500 5.00	Result 98.56 4.803 99.66 MRL Result 3.692 ND ND	Qualifier MRL Qualifier	mg/L mg/L Clier Unit mg/L mg/L	D	99 96 100 mple ID %Rec 74 94 72	Limits 90 - 110 90 - 110 90 - 110 : Lab Corr Prep Ty %Rec Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	0 1 0 ntrol S pe: To	Lim 1 1 amplo tal/N/
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride Fluoride Sulfate Lab Sample ID: 280-164042-3 Matrix: Water Analysis Batch: 580064	3 MS	•	Added 100 5.00 100 Spike Added 5.00 0.500	Result 98.56 4.803 99.66 MRL Result 3.692 ND ND	Qualifier MRL Qualifier	mg/L mg/L Clier Unit mg/L mg/L	D	99 96 100 mple ID %Rec 74 94 72	Limits 90 - 110 90 - 110 90 - 110 : Lab Corr Prep Ty %Rec Limits 50 - 150 50 - 150 50 - 150 50 - 150 So	0 1 0 ntrol S pe: To	Lim 1 1 amplo tal/N/
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride Fluoride Sulfate Lab Sample ID: 280-164042-3 Matrix: Water Analysis Batch: 580064 Analyte	3 MS Sample S Result C	Qualifier	Added 100 5.00 100 Spike Added 5.00 0.500 5.00 Spike Added	Result 98.56 4.803 99.66 MRL Result 3.692 ND ND MS Result	Qualifier MRL Qualifier MS Qualifier	mg/L mg/L Clier Unit mg/L mg/L mg/L		99 96 100 mple ID %Rec 74 94 72 Client S	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec Limits 50 - 150 50 - 150	0 1 0 ntrol S pe: To	Lim 1 1 amplo tal/N/
Chloride Fluoride Sulfate Lab Sample ID: MRL 280-580 Matrix: Water Analysis Batch: 580064 Analyte Chloride Fluoride Sulfate Lab Sample ID: 280-164042-3 Matrix: Water	3 MS Sample S	Qualifier	Added 100 5.00 100 Spike Added 5.00 0.500 5.00 Spike	Result 98.56 4.803 99.66 MRL Result 3.692 ND ND	MRL Qualifier MS Qualifier F1	mg/L mg/L Clier Unit mg/L mg/L mg/L		99 96 100 mple ID <u>%Rec</u> 74 94 72 Client S	Limits 90 - 110 90 - 110 90 - 110 : Lab Cor Prep Ty %Rec Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	0 1 0 ntrol S pe: To	tal/N/

Eurofins Denver

QC Sample Results

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: 280-164042 Matrix: Water	2-3 MSD								C	lient S	ample ID Prep Ty		
Analysis Batch: 580064	Sampla	Sam	nlo	Spika	Men	MSD					%Rec		RPD
Analyte	Sample Result		•	Spike Added	_	Qualifier	Unit		D	%Rec	%Rec Limits	RPD	Limit
Chloride	36.1			50.0	107.1		mg/L		_	142	80 - 120	5	20
Fluoride	0.576			5.00	6.788		mg/L			142	80 - 120	8	20
Sulfate	39.1			50.0	114.0		mg/L			150	80 - 120	7	20
Lab Sample ID: 280-164042 Matrix: Water	2-3 DU								C	Client S	ample ID Prep Ty		
Analysis Batch: 580064		_											
	Sample		•			DU			_				RPD
Analyte	Result		ifier			Qualifier	Unit		D			RPD	Limit
Chloride	36.1				36.06		mg/L					0.06	15
Fluoride Sulfate	0.576 39.1				0.5761 39.05		mg/L mg/L					0.1 0.09	15 15
	00.1	• •			00.00		ing/L					0.00	10
Lab Sample ID: MB 280-580	0183/6							(Clie	nt Sam	nple ID: M	ethod	Blank
Matrix: Water											Prep Ty	pe: Tot	tal/NA
Analysis Batch: 580183													
			MB										
Analyte	Re	ND	Qualifier		RL 5.00	MDL Unit		D	Pr	repared	Analyz		Dil Fac
Sulfate Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183	30183/4						CI	ient	San	nple ID	: Lab Cor Prep Ty		
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte	30183/4			Spike Added	Result	LCS Qualifier	Unit	ient	San D	%Rec	Prep Ty %Rec Limits		
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183	30183/4			•	_			ient			Prep Ty %Rec		
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water				Added	Result	Qualifier	Unit mg/L		D	%Rec 99	Prep Ty %Rec Limits	pe: Tot	e Dup
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4				Added 100	Result 99.48	Qualifier	Unit mg/L		D	%Rec 99	Prep Ty %Rec Limits 90 - 110 D Control Prep Ty	pe: Tot	e Dup tal/NA
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-5 Matrix: Water Analysis Batch: 580183				Added 100 Spike	Result 99.48	Qualifier LCSD	Unit mg/L		_ ple	%Rec 99	Prep Ty %Rec Limits 90 - 110 O Control Prep Ty %Rec	pe: Tot Sample pe: Tot	e Dup tal/NA RPD
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water				Added 100	Result 99.48	Qualifier	Unit mg/L		D	%Rec 99	Prep Ty %Rec Limits 90 - 110 D Control Prep Ty	pe: Tot	e Dup tal/NA
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58 Matrix: Water	580183/5			Added 100 Spike Added	Result 99.48 LCSD Result	Qualifier LCSD	Unit mg/L Client S	Sam	D ple	%Rec 99 ID: Lat %Rec 99	Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits	pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup tal/NA RPD Limit 10
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58	580183/5			Added 100 Spike Added	Result 99.48 LCSD Result 99.32	Qualifier LCSD	Unit mg/L Client S	Sam	D ple	%Rec 99 ID: Lat %Rec 99	Prep Ty %Rec Limits 90 - 110 O Control Prep Ty %Rec Limits 90 - 110	pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup tal/NA RPD Limit 10
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58 Matrix: Water	580183/5			Added 100 Spike Added 100	Result 99.48 LCSD Result 99.32	Qualifier LCSD Qualifier	Unit mg/L Client S	Sam	D ple	%Rec 99 ID: Lat %Rec 99	Prep Ty %Rec Limits 90 - 110 O Control Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec	pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup tal/NA RPD Limit 10
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58 Matrix: Water Analysis Batch: 580183	580183/5			Added 100 Spike Added 100 Spike	Result 99.48 LCSD Result 99.32	Qualifier LCSD Qualifier	Unit mg/L Client S Unit mg/L Cl	Sam	D ple D San	%Rec 99 ID: Lak <u>%Rec</u> 99 nple ID	Prep Ty %Rec Limits 90 - 110 O Control Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110	pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup tal/NA RPD Limit 10
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58 Matrix: Water Analysis Batch: 580183 Analyte	580183/5	 al Di	 ssolve	Added 100 Spike Added 100 Spike Added 5.00	Result 99.48 LCSD Result 99.32 MRL Result ND	Qualifier LCSD Qualifier	Unit Unit Client S Unit Cl Unit	Sam	D ple D San	%Rec 99 ID: Lak %Rec 99 nple ID	Prep Ty %Rec Limits 90 - 110 O Control Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits %Rec Limits	pe: Tot Sample pe: Tot <u>RPD</u> 0	e Dup tal/NA RPD Limit 10
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Matrix: Water Analysis Batch: 580183 Analyte Sulfate Method: SM 2540C - So Lab Sample ID: MB 280-580 Matrix: Water	580183/5 80183/3 lids, Tota		 ssolve	Added 100 Spike Added 100 Spike Added 5.00	Result 99.48 LCSD Result 99.32 MRL Result ND	Qualifier LCSD Qualifier	Unit Unit Client S Unit Cl Unit	Sam ient	□ ple □ San	%Rec 99 ID: Lak %Rec 99 ID: Lak %Rec 99 mple ID 10 %Rec 70	Prep Ty %Rec Limits 90 - 110 O Control Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits %Rec Limits	pe: Tot Sample pe: Tot 	e Dup tal/NA RPD Limit 10 ample tal/NA
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Sulfate Method: SM 2540C - So Lab Sample ID: MB 280-580	580183/5 80183/3 lids, Tota			Added 100 Spike Added 100 Spike Added 5.00	Result 99.48 LCSD Result 99.32 MRL Result ND	Qualifier LCSD Qualifier	Unit Unit Client S Unit Cl Unit	Sam ient	□ ple □ San	%Rec 99 ID: Lak %Rec 99 ID: Lak %Rec 99 mple ID 10 %Rec 70	Prep Ty %Rec Limits 90 - 110 O Control p Prep Ty %Rec Limits 90 - 110 Control p Prep Ty %Rec Limits 50 - 150	pe: Tot Sample pe: Tot 	e Dup tal/NA RPD Limit 10 ample tal/NA
Lab Sample ID: LCS 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: LCSD 280-4 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Lab Sample ID: MRL 280-58 Matrix: Water Analysis Batch: 580183 Analyte Sulfate Matrix: Water Analysis Batch: 580183 Analyte Sulfate Method: SM 2540C - So Lab Sample ID: MB 280-580 Matrix: Water	580183/5 80183/3 lids, Tota 0191/1	МВ		Added 100 Spike Added 100 Spike Added 5.00	Result 99.48 LCSD Result 99.32 MRL Result ND	Qualifier LCSD Qualifier	Unit mg/L Client S Unit mg/L Cl	Sam ient	D ple D San	%Rec 99 ID: Lak %Rec 99 ID: Lak %Rec 99 mple ID 10 %Rec 70	Prep Ty %Rec Limits 90 - 110 O Control p Prep Ty %Rec Limits 90 - 110 Control p Prep Ty %Rec Limits 50 - 150	pe: Tot Sample pe: Tot RPD 0 ntrol Sa pe: Tot pe: Tot	e Dup tal/NA RPD Limit 10 ample tal/NA

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 280-580191/2 Matrix: Water Analysis Batch: 580191				Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Dissolved Solids (TDS)	501	483.0		mg/L		96	88 - 114

Eurofins Denver

QC Association Summary

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill Job ID: 280-164042-1 SDG: LOS Landfill

10

Metals

Prep Batch: 580851

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-164042-1	MW-2016-6	Total Recoverable	Water	3005A	
280-164042-2	MW-2016-8	Total Recoverable	Water	3005A	
280-164042-3	MW-2016-3	Total Recoverable	Water	3005A	
280-164042-4	MW-2016-5	Total Recoverable	Water	3005A	
280-164042-5	MW-2016-4	Total Recoverable	Water	3005A	
280-164042-6	MW-2016-10	Total Recoverable	Water	3005A	
280-164042-7	MW-2016-9	Total Recoverable	Water	3005A	
280-164042-8	MW-2016-11	Total Recoverable	Water	3005A	
MB 280-580851/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 280-580851/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
280-164042-8 MS	MW-2016-11	Total Recoverable	Water	3005A	
280-164042-8 MSD	MW-2016-11	Total Recoverable	Water	3005A	

Prep Batch: 580894

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-164042-9	MW-2016-2	Total Recoverable	Water	3005A	
280-164042-10	DUP	Total Recoverable	Water	3005A	
MB 280-580894/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 280-580894/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
280-164042-9 MS	MW-2016-2	Total Recoverable	Water	3005A	
280-164042-9 MSD	MW-2016-2	Total Recoverable	Water	3005A	

Analysis Batch: 581188

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-164042-1	MW-2016-6	Total Recoverable	Water	6010C	580851
280-164042-2	MW-2016-8	Total Recoverable	Water	6010C	580851
280-164042-3	MW-2016-3	Total Recoverable	Water	6010C	580851
280-164042-4	MW-2016-5	Total Recoverable	Water	6010C	580851
280-164042-5	MW-2016-4	Total Recoverable	Water	6010C	580851
280-164042-6	MW-2016-10	Total Recoverable	Water	6010C	580851
280-164042-7	MW-2016-9	Total Recoverable	Water	6010C	580851
280-164042-8	MW-2016-11	Total Recoverable	Water	6010C	580851
280-164042-9	MW-2016-2	Total Recoverable	Water	6010C	580894
280-164042-10	DUP	Total Recoverable	Water	6010C	580894
MB 280-580851/1-A	Method Blank	Total Recoverable	Water	6010C	580851
MB 280-580894/1-A	Method Blank	Total Recoverable	Water	6010C	580894
LCS 280-580851/2-A	Lab Control Sample	Total Recoverable	Water	6010C	580851
LCS 280-580894/2-A	Lab Control Sample	Total Recoverable	Water	6010C	580894
280-164042-8 MS	MW-2016-11	Total Recoverable	Water	6010C	580851
280-164042-8 MSD	MW-2016-11	Total Recoverable	Water	6010C	580851
280-164042-9 MS	MW-2016-2	Total Recoverable	Water	6010C	580894
280-164042-9 MSD	MW-2016-2	Total Recoverable	Water	6010C	580894

General Chemistry

Analysis Batch: 580064

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
280-164042-1	MW-2016-6	Total/NA	Water	9056A
280-164042-1	MW-2016-6	Total/NA	Water	9056A
280-164042-2	MW-2016-8	Total/NA	Water	9056A
280-164042-2	MW-2016-8	Total/NA	Water	9056A

Eurofins Denver

QC Association Summary

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

General Chemistry (Continued)

Analysis Batch: 580064 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-164042-3	MW-2016-3	Total/NA	Water	9056A	
280-164042-4	MW-2016-5	Total/NA	Water	9056A	
280-164042-4	MW-2016-5	Total/NA	Water	9056A	
280-164042-5	MW-2016-4	Total/NA	Water	9056A	
280-164042-6	MW-2016-10	Total/NA	Water	9056A	
280-164042-6	MW-2016-10	Total/NA	Water	9056A	
280-164042-7	MW-2016-9	Total/NA	Water	9056A	
280-164042-8	MW-2016-11	Total/NA	Water	9056A	
280-164042-9	MW-2016-2	Total/NA	Water	9056A	
280-164042-10	DUP	Total/NA	Water	9056A	
280-164042-10	DUP	Total/NA	Water	9056A	
MB 280-580064/6	Method Blank	Total/NA	Water	9056A	
LCS 280-580064/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-580064/5	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-580064/3	Lab Control Sample	Total/NA	Water	9056A	
280-164042-3 MS	MW-2016-3	Total/NA	Water	9056A	
280-164042-3 MSD	MW-2016-3	Total/NA	Water	9056A	
280-164042-3 DU	MW-2016-3	Total/NA	Water	9056A	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-164042-5	MW-2016-4	Total/NA	Water	9056A	
280-164042-7	MW-2016-9	Total/NA	Water	9056A	
280-164042-8	MW-2016-11	Total/NA	Water	9056A	
280-164042-9	MW-2016-2	Total/NA	Water	9056A	
MB 280-580183/6	Method Blank	Total/NA	Water	9056A	
LCS 280-580183/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 280-580183/5	Lab Control Sample Dup	Total/NA	Water	9056A	
MRL 280-580183/3	Lab Control Sample	Total/NA	Water	9056A	

Analysis Batch: 580191

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-164042-1	MW-2016-6	Total/NA	Water	SM 2540C	
280-164042-2	MW-2016-8	Total/NA	Water	SM 2540C	
280-164042-3	MW-2016-3	Total/NA	Water	SM 2540C	
280-164042-4	MW-2016-5	Total/NA	Water	SM 2540C	
280-164042-5	MW-2016-4	Total/NA	Water	SM 2540C	
280-164042-6	MW-2016-10	Total/NA	Water	SM 2540C	
280-164042-7	MW-2016-9	Total/NA	Water	SM 2540C	
280-164042-8	MW-2016-11	Total/NA	Water	SM 2540C	
280-164042-9	MW-2016-2	Total/NA	Water	SM 2540C	
280-164042-10	DUP	Total/NA	Water	SM 2540C	
MB 280-580191/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 280-580191/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Job ID: 280-164042-1 SDG: LOS Landfill

Job ID: 280-164042-1

Client Sample ID: MW-2016-6 Date Collected: 06/29/22 08:35 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/18/22 23:48	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 14:50	MEC	TAL DEN
Total/NA	Analysis	9056A		10	10 mL	10 mL	580064	07/06/22 15:06	MEC	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-8 Date Collected: 06/28/22 10:50 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/18/22 23:52	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 15:22	MEC	TAL DEN
Total/NA	Analysis	9056A		10	10 mL	10 mL	580064	07/06/22 15:38	MEC	TAL DEN
Total/NA	Analysis	SM 2540C		1	25 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-3 Date Collected: 06/29/22 08:50 Date Received: 07/05/22 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 00:12	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 15:54	MEC	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-5 Date Collected: 06/29/22 10:30 Date Received: 07/05/22 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 00:16	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 17:30	MEC	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	580064	07/06/22 17:46	MEC	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-4 Date Collected: 06/28/22 14:30 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 00:20	MAB	TAL DEN

Eurofins Denver

SDG: LOS Landfill

Matrix: Water

Lab Sample ID: 280-164042-1 **Matrix: Water**

Lab Sample ID: 280-164042-3 Matrix: Water

Lab Sample ID: 280-164042-4

Lab Sample ID: 280-164042-5

Lab Sample ID: 280-164042-2

Matrix: Water

Matrix: Water

Client Sample ID: MW-2016-4 Date Collected: 06/28/22 14:30 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 18:02	MEC	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	580183	07/07/22 17:33	RAF	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-10 Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 00:24	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 18:18	MEC	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	580064	07/06/22 18:35	MEC	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-9 Date Collected: 06/29/22 10:45 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 00:28	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 18:51	MEC	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	580183	07/07/22 16:45	RAF	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-11 Date Collected: 06/29/22 11:00 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580851	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 00:32	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 19:07	MEC	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	580183	07/07/22 17:01	RAF	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: MW-2016-2 Date Collected: 06/29/22 11:10 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580894	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 01:17	MAB	TAL DEN

Lab Sample ID: 280-164042-5 Matrix: Water

Lab Sample ID: 280-164042-6

Matrix: Water

Lab Sample ID: 280-164042-7 **Matrix: Water**

Lab Sample ID: 280-164042-8

Lab Sample ID: 280-164042-9

Eurofins Denver

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 280-164042-9

Lab Sample ID: 280-164042-10

Client Sample ID: MW-2016-2 Date Collected: 06/29/22 11:10 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 19:23	MEC	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	580183	07/07/22 17:17	RAF	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Client Sample ID: DUP Date Collected: 06/29/22 08:20 Date Received: 07/05/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	580894	07/18/22 08:40	KMS	TAL DEN
Total Recoverable	Analysis	6010C		1			581188	07/19/22 01:37	MAB	TAL DEN
Total/NA	Analysis	9056A		1	10 mL	10 mL	580064	07/06/22 19:39	MEC	TAL DEN
Total/NA	Analysis	9056A		5	10 mL	10 mL	580064	07/06/22 19:55	MEC	TAL DEN
Total/NA	Analysis	SM 2540C		1	50 mL	100 mL	580191	07/07/22 09:54	ASP	TAL DEN

Laboratory References:

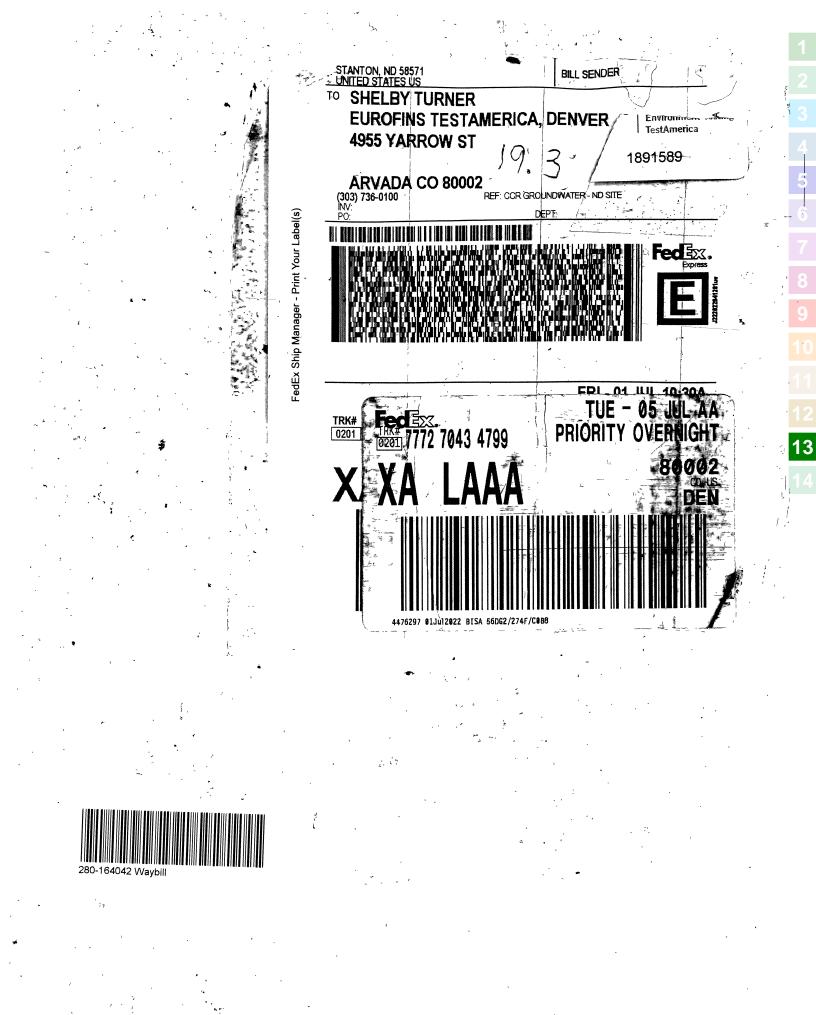
TAL DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Eurofins Denver

Accreditation/Certification Summary

Client: Basin Electric Power Cooperative Project/Site: CCR Groundwater - ND Sites - LOS Landfill

Laboratory: Eurofins Denver


The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
North Dakota State R-034 01-08-23	North Dakota	State	R-034	01-08-23

Job ID: 280-164042-1

SDG: LOS Landfill

Eurofins TestAmerica, Denver 4955 Yarrow Street Arvada, CO 80002 Phone (303) 736-0100 Eax (303) 431-7171	Chain of C	ain of Custody Record	cord		Seurofins Environment Testing America
Client Information	Sampler. A. Knuthach / Mulac	Shottler Turner.	Lab PM: Turner. Shelbv R	Carrier Tracking No(s):	COC No:
Client Contact: Mr. Aaron Knutson	145 - 7238	T	E-Mail: Shelby.Turner@Eurofinset.com		Page: of
Company: Basin Electric Power Cooperative			Analysis Requested	uested	Job #:
Address: 3901 Highway 200A	Due Date Requested:		<u>5 Ot</u>	-	Preservation Codes: A - HCI M - Hevane
City: Stanton	TAT Requested (days):			280-1	
State, zip: ND, 58571	Standard		MILLIS (VI Xi	64042	D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3 F - MaOH R - Na2SO3
Phone: 701-745-7238(Tel)	Po #: Purchase Order Requested	0)	(III qq <i>i</i> sisi sisi sisi sisi sisi sisi sisi s	2 Cha	G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email: <u>aknutson@bepc.com</u>	:# OM	8 OL 10	No) oron (/ u2 ,9bi), <u>6020</u>), 6020		- Ice J - Di Water וע _ בחד∆
Project Name CCR Groundwater - North Dakota Sites	Project #: . 28021258	ю, (,, с	es or Fluori (1 of 3 (1 of 3 (1 of 3		L - EDA
Site: LOS LANDFILL	SSOW#:	qms2	riboride, ithium ithiu ithium ithiu ithium i		0 Other:
	Sample		Action Michael (1997) 19 - 2012 - 2013 10 - 0565_28D - C1 540C_Calcd - 7, 74706 - Total (315_Ra226, 93 345_Ra226, 93 35_Ra226, 93 345_Ra226,		nedmulvi listo 2000 1000 1000 1000 1000 1000 1000 100
sample identification	Dample Date Time G-grau	ation Code:			
MW. JOIL-L	6-29-22 0835 C	CN	XXX		LL'L -HO
mw - 2014 - 8	1050	300	XXX		0H - 7,85
mw - 2016 - 3	6-29-22 0850 6	3	X X X		PH- 7.78
MW - 2016 - 5	6-29.32 1030 (3	X X X		117.7 - HQ
mu - Jole - 4	6-28-22 1430	3	× × ×		0H - 8.05
MW - 2016 - 10	6-29-22 0520	S S	× × ×		pH - 7.81
mm - 3016 - 9	6-39-32 1045	3	x x x		19H- 7.61
MW - 2016-11	6-39-23 1100	3	× × ×		0H - 7.66
mu - Joile - J	6-25-22 1110	3	X X X		0H - 7,65
Dup	0 2830 28.96- 07	3	XXX		PH- 7.81
Possible Hazard Identification			Sample Disnosal (A fee may be assessed if samples are retained longer than 1 month	ssessed if samples are retai	ined longer than 1 month
Non-Hazard Hammable Skin Irritant	Poison B 🖾 Unknown 🔲 Radiological	ogical	Return To Client	Disposal By Lab	Archive For Months
Deliverable Requested: I, II, IV, Other (specify)			Special Instructions/QC Requirements		
Empty Kit Relinquished by:	Date:	Ц	Time:	Method of Shipment:	
Relinquisherby:	Date/Time: し-ろいースス	Company	Reçeived by:	Date Time.	0900 COMPANYACN
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			Cooler Temperature(s) °C and Other Remarks	The The L	
			-	-	Ver: 01/16/2019

Login Sample Receipt Checklist

Client: Basin Electric Power Cooperative

Login Number: 164042 List Number: 1 Creator: Roehsner, Karen P

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Water present in cooler; indicates evidence of melted ice.
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	Limited HT remaining.
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 280-164042-1 SDG Number: LOS Landfill

List Source: Eurofins Denver

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #:2040Client:Basin Electric Power CooperativeWorkorder:LOS Landfill CCR (4280)PO:790708-04 LOS

Kevin Solie Basin Electric Power Cooperative 1717 E Interstate Ave Bismarck, ND 58503

Certificate of Analysis

Approval

All data reported has been reviewed and approved by:

C. Courter

Claudette Carroll, Lab Manager Bismarck, ND

Analyses performed under Minnesota Department of Health Accreditation conforms to the current TNI standards.

NEW ULM LAB CERTIFICATIONS: MN LAB # 027-015-125 ND WW/DW # R-040

BISMARCK LAB CERTIFICATIONS: MN LAB # 038-999-267 ND W/DW # ND-016

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2040

Client: Basin Electric Power Cooperative

Workorder Summary

Workorder Comments

All analytes with dilution factors greater than 1 (displayed in DF column) required dilution due to matrix or high concentration of target analyte unless otherwise noted and reporting limits (RDL column) have been adjusted accordingly.

Sample Comments

4280008 (Dup 1) - Sample

Time sampled was not supplied by the client.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2040		Client:	Basin	Electri	ic Power Coop	perative			
Analytical Results									
Lab ID: 4280001 Sample ID: MW-2016-2		Date Collected: Date Received:)/12/2022)/13/2022			Groundwater Client		
Temp @ Receipt (C): 2.8									
Method: ASTM D516-16									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Sulfate	334	mg/L	25	5	10/19/2022 11:25	10/19/2022 11:25	EJV	MA,NDA	
Method: EPA 6010D									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Boron	0.25	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:06	SLZ	MA,NDA	
Calcium	9.40	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:30	SLZ	MA,NDA	
Method: SM4500-CI-E 2011									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Chloride	15.9	mg/L	2.0	1	10/25/2022 14:50	10/25/2022 14:50	EJV	MA,NDA	
Method: SM4500-F-C-2011									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Fluoride	0.53	mg/L	0.1	1	10/14/2022 13:46	10/14/2022 13:46	RAA		
Method: USGS I-1750-85									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Total Dissolved Solids	1730	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #:	2040		Client:	Basin	n Electri	c Power Coop	perative			
Analytical F	Results									
Lab ID: Sample ID:	4280002 MW-2016-3		Date Collected: Date Received:)/11/2022)/13/2022		Matrix: Collector:	Groundwater Client		
Temp @ Receip	ot (C): 2.8									
Method: ASTM D	516-16									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Sulfate		45.2	mg/L	5	1	10/19/2022 11:26	10/19/2022 11:26	EJV	MA,NDA	
Method: EPA 601	0D									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Boron		0.22	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:06	SLZ	MA,NDA	
Calcium		5.09	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:31	SLZ	MA,NDA	
Method: SM4500-	-CI-E 2011									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Chloride		36.5	mg/L	2.0	1	10/25/2022 14:52	10/25/2022 14:52	EJV	MA,NDA	
Method: SM4500-	-F-C-2011									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Fluoride		0.69	mg/L	0.1	1	10/14/2022 14:33	10/14/2022 14:33	RAA		
Method: USGS I-	1750-85									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Total Dissolved Sc	olids	1470	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2040		Client:	Basin	Electr	ic Power Coop	perative			
Analytical Results									
Lab ID: 4280003 Sample ID: MW-2016-6		Date Collected: Date Received:)/11/2022)/13/2022		Matrix: Collector:	Groundwater Client		
Temp @ Receipt (C): 2.8	;								
Method: ASTM D516-16									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Sulfate	637	mg/L	25	5	10/19/2022 11:17	10/19/2022 11:17	EJV	MA,NDA	
Method: EPA 6010D									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Boron	0.24	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:07	SLZ	MA,NDA	
Calcium	8.55	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:34	SLZ	MA,NDA	
Method: SM4500-CI-E 2011									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Chloride	9.3	mg/L	2.0	1	10/25/2022 14:53	10/25/2022 14:53	EJV	MA,NDA	
Method: SM4500-F-C-2011									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Fluoride	0.48	mg/L	0.1	1	10/14/2022 14:27	10/14/2022 14:27	RAA		
Method: USGS I-1750-85									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Total Dissolved Solids	2070	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #:	2040		Client:	Basir	n Electri	ic Power Coop	perative			
Analytical	Results									
Lab ID: Sample ID:	4280004 MW-2016-8		Date Collected: Date Received:)/11/2022)/13/2022		Matrix: Collector:	Groundwater Client		
Temp @ Recei	ipt (C): 2.8									
Method: ASTM I	D516-16									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Sulfate		697	mg/L	25	5	10/19/2022 11:18	10/19/2022 11:18	EJV	MA,NDA	
Method: EPA 60	10D									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Boron		0.22	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:08	SLZ	MA,NDA	
Calcium		12.8	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:35	SLZ	MA,NDA	
Method: SM450	0-CI-E 2011									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Chloride		11.6	mg/L	2.0	1	10/25/2022 14:54	10/25/2022 14:54	EJV	MA,NDA	
Method: SM450	0-F-C-2011									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Fluoride		0.37	mg/L	0.1	1	10/14/2022 14:21	10/14/2022 14:21	RAA		
Method: USGS I	-1750-85									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Total Dissolved S	Solids	2270	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #:	2040		Client:	Basin	Electr	ic Power Coop	perative			
Analytical	Results									
Lab ID: Sample ID:	4280005 MW-2016-9		Date Collected: Date Received:)/12/2022)/13/2022		Matrix: Collector:	Groundwater Client		
Temp @ Recei	pt (C): 2.8									
Method: ASTM I	D516-16									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Sulfate		176	mg/L	25	5	10/19/2022 11:19	10/19/2022 11:19	EJV	MA,NDA	
Method: EPA 60	10D									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Boron		0.24	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:10	SLZ	MA,NDA	
Calcium		6.67	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:36	SLZ	MA,NDA	
Method: SM450	0-CI-E 2011									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Chloride		20.8	mg/L	2.0	1	10/25/2022 14:55	10/25/2022 14:55	EJV	MA,NDA	
Method: SM450	0-F-C-2011									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Fluoride		0.54	mg/L	0.1	1	10/14/2022 13:18	10/14/2022 13:18	RAA		
Method: USGS I	-1750-85									
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Total Dissolved S	Solids	1670	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA	

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2040		Client:	Basin Electric Power Cooperative								
Analytical Results											
Lab ID: 4280006 Sample ID: MW-2016-10		Date Collected: Date Received:)/11/2022)/13/2022		Matrix: Collector:	Groundwater Client				
Temp @ Receipt (C): 2.8											
Method: ASTM D516-16											
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual		
Sulfate	340	mg/L	25	5	10/19/2022 11:20	10/19/2022 11:20	EJV	MA,NDA			
Method: EPA 6010D											
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual		
Boron	0.22	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:10	SLZ	MA,NDA			
Calcium	5.89	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:37	SLZ	MA,NDA			
Method: SM4500-CI-E 2011											
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual		
Chloride	16.2	mg/L	2.0	1	10/25/2022 14:56	10/25/2022 14:56	EJV	MA,NDA			
Method: SM4500-F-C-2011											
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual		
Fluoride	0.61	mg/L	0.1	1	10/14/2022 14:10	10/14/2022 14:10	RAA				
Method: USGS I-1750-85											
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual		
Total Dissolved Solids	1680	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA			

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #:	2040		Client: Basin Electric Power Cooperative								
Analytical	Results										
Lab ID: Sample ID:	4280007 MW-2016-11		Date Collected: Date Received:)/12/2022)/13/2022		Matrix: Collector:	Groundwater Client			
Temp @ Recei	pt (C): 2.8										
Method: ASTM I	D516-16										
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual	
Sulfate		241	mg/L	25	5	10/19/2022 11:35	10/19/2022 11:35	EJV	MA,NDA		
Method: EPA 60	10D										
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual	
Boron		0.27	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:11	SLZ	MA,NDA		
Calcium		6.99	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:39	SLZ	MA,NDA		
Method: SM450	0-CI-E 2011										
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual	
Chloride		21.6	mg/L	2.0	1	10/25/2022 14:58	10/25/2022 14:58	EJV	MA,NDA		
Method: SM450	0-F-C-2011										
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual	
Fluoride		0.56	mg/L	0.1	1	10/14/2022 14:04	10/14/2022 14:04	RAA			
Method: USGS I	-1750-85										
Parameter		Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual	
Total Dissolved S	Solids	1600	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA		

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2040		Client:	Basir	Electri	c Power Coop	perative			
Analytical Results									
Lab ID: 4280008 Sample ID: Dup 1		Date Collected: Date Received:)/25/2022)/13/2022			Groundwater Client		
Temp @ Receipt (C): 2.8									
Method: ASTM D516-16									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Sulfate	741	mg/L	25	5	10/19/2022 11:36	10/19/2022 11:36	EJV	MA,NDA	
Method: EPA 6010D									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Boron	0.24	mg/L	0.1	1	10/13/2022 17:14	10/17/2022 12:13	SLZ	MA,NDA	
Calcium	13.5	mg/L	1	1	10/13/2022 17:14	10/25/2022 12:41	SLZ	MA,NDA	
Method: SM4500-CI-E 2011									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Chloride	11.5	mg/L	2.0	1	10/25/2022 14:59	10/25/2022 14:59	EJV	MA,NDA	
Method: SM4500-F-C-2011									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Fluoride	0.36	mg/L	0.1	1	10/14/2022 14:15	10/14/2022 14:15	RAA		
Method: USGS I-1750-85									
Parameter	Results	Units	RDL	DF	Prepared	Analyzed	Ву	Cert	Qual
Total Dissolved Solids	2300	mg/L	10	1	10/14/2022 09:00	10/14/2022 09:00	RAA	MA,NDA	

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.MVTL.com

Account #: 2040

Client: Basin Electric Power Cooperative

2616 East Bro Bismarck, NE Phone: (701) 258-9 Toll Free: (800) 279-6885	2616 East Broadway Avenue Bismarck, ND 58501 Phone: (701) 258-9720 oll Free: (800) 279-6885 Fax: (701) 258-9724														Basin Electric Power Cooperative Ustody Record W0: 4280							
Leland Olds Stati 3901 HIGHWAY 20 STANTON, ND 58	BASIN ELECTRIC POWER COOP. Leland Olds Station 3901 HIGHWAY 200A STANTON, ND 58571 ling Address (indicate if different from above): H 、 Lrap; いたいち													ail:	2Da Ks	2-509 alie @	bepc	. 4	ion	P		
Alt: Liabilities 3901 Hwy 200A Stanton, ND 58523-		Quote Number Project Name/Number: 605-143 LOS LANDFILL CCR							43 2	Date Submitted: 10-13-2-2 Purchase Order #: 675 366-04					_							
Sample Information	on	Filtered			1			B	ottl	e Ty	ype					_	Ana	lysis	S			
Lab Use Only Sample ID Lab Number Sample ID 001 002 MW - 2016 - 2 003 MW - 2016 - 3	Sample Matrix PW- Potable Water GW - Groundwater WW - Wastewater SW - Surface Water S - SoliVisidage O- Other	Date Sampled 10-12-22 10-11-22	Time Sampled	W X Untreated	Sterile	XXXX F500 mI HNO3	1000 ml H2SO4	250 ml H2SO4	1000 ml NaOH	Amber HCI	Amber Unpres.	VOC Vials HCI	Amber H2SO4	40 ml Vials H2SO4	Other:	TD. SJH	Analysis S. C.	Req	uired F			
003 MW-2016-8		10-11-22	0825	R	-	R	•	-	_				_							-		
005 MW-2016-9		10-12-22	0855	×		R																
006 MW-2016-10 007 MW-2016-11		10-11-27 10-12-27	1030 -0840	RR		XX											8					
008 Dup Comments:	V	10-11-22		X		X																
Transferred by: 1. 2. 3.	Sample C	ond	litio	n:	~	Ŧ	Re		/ed	by:			ß	Date: C2t 2.2	Tim /520		Тет 2.,827 92	m				
Please submit Form # 80-90003-1	the top two copie		samples. ee above for					the	con	nple	eted	orig	gina	Iw	ith		Its. tive Date:	: 15 J	N1157-			

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Attachment B Boring Logs and Well Completion Diagrams

EA	COM						WELL NUMBE	ER N	٨W	-2016-12 PAGE 1 OF
CLIENT	r Basin I	Electr	ic Pow	er Co	operativ	ve	PROJECT NAME Leland Olds Landfill			
	-						PROJECT LOCATION Stanton, North Dakota			
							PLETED 10/4/2022 GROUND ELEVATION 1909.224 ft NAVD88 TOC EL	EV/AT		1011 518 # NA\//
							GROUND WATER LEVELS: Measured bgs or fro			
	NG METH					iiiig	AT TIME OF DRILLING None Encountered ATD	in top	01 00	onig, do notot
	ED BY D									
	DINATES									
o DEPTH (ft)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG	Depth, bgs	MATERIAL DESCRIPTION	we		ONSTRUCTIC - Protective Casi with Locking Ca
				OL			Dark grayish brown (10YR 4/2) soils and organic material	\mathbb{X}	X	
-						1.5	1907.1 1907.1			
-	SONIC	100	NA	ML		2.8	Light olive brown (10Y 5/3) sandy SILT, stiff, dry, 20-30% sand (very fine to fine), very mottled (FILL material)	Ň		
_	1	100				2.0	Dark gravish brown (2.5Y 4/2) sandy CLAY, stiff, dry, low to medium plasticity,			 Volclay Bentor
_				CL			20% very fine to fine sand, mottled (FILL material)			Grout (0' - 83.8' bgs)
5						5.0	1904.2). 🕅	X	- PVC Pipe
							No recovery			(2' ags - 101'
_						7.0				bgs)
-						7.0	Dark grayish brown (2.5Y 4/2) sandy CLAY, stiff, dry, low to medium plasticity,			
_				CL			20% very fine to fine sand, mottled (FILL material)			
_						9.0	19002			
10	SONIC	82	NA	СН			Very dark grayish brown (10YR 3/2) CLAY, medium stiffness, dry to moist, high plasticity, some sand, some orange-y red to red/rust gravel	×.		
	2	02		0.1		11.0	1898.2			
							Dark gray (10YR 4/1) sandy SILT, stiff, slightly moist, low plasticity, 30-40% very			
-				ML			fine to fine sand	×.		
_						13.0	18962 Grayish brown (2.5Y 5/2) silty SAND, dense, slightly moist, fine, high sphericity,	\mathbb{N}		
_				SM			angular to subangular			
15						15.0	1894.2	×.		
							No recovery	×		
						17.0	4007			
-					<i>\.\\\\\\</i>	17.0	Very dark grayish brown (2.5Y 3/2) sandy CLAY, slightly moist, medium plasticity,	\mathbb{N}		
_							fine sand (20%)			
_								Ň		
20	SONIC	79	NA							
	3	10								
				CL						
_										
-										
4								\bigotimes		
25						25.0	1884.2	\mathbb{K}		
							No recovery	\square		
-								Ň		
-								\boxtimes	\square	
-										
_					777.7.1	29.0		\mathbb{N}		
30	SONIC			CL			Very dark grayish brown (2.5Y 3/2) sandy CLAY, slightly moist, medium plasticity, fine sand (20%)	\mathbb{N}	\mathbb{X}	

⁽Continued Next Page)

a e	COM						WELL NUMBE	ER M	W-2016-12 PAGE 2 OF 4
	T <u>Basin</u>				operativ	/e	PROJECT NAME Leland Olds Landfill PROJECT LOCATION Stanton, North Dakota		
05 DEPTH (ft)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG	Depth, bgs	MATERIAL DESCRIPTION 명정 비미	WELI	_ CONSTRUCTION
	4	63	NA	CL		33.0	1876. Gray (10 YR 5/1) silty SAND, moist, medium dense to dense, fine, subangular,		VolclayBentonite
 35 				SM		35.0 36.0	high sphericity, poorly graded 18742 No recovery 1873: Dark gray (2.5Y 4/1) sandy CLAY, medium stiffness, moist, medium plasticity, 30% fine sand	KAT	Grout (0' - 83.8 bgs) PVC Pipe (2' ags - 101' bgs)
	SONIC 5	83	NA	CL		38.0	Gray (2.5Y 6/1) silty SAND, moist, medium dense, fine, subangular, high sphericity, poorly graded		
	SONIC 6	100	NA	SM		52.0	1877		
	SONIC 7	92	NA	SM		53.0	No recovery Some sandstone cobbles up to 120 mm composed of same grains as surrounding silty SAND 1854.2		
	SONIC 8	88	NA	SM SC CL		56.0 57.0 59.0 62.0	No recovery 18532 Dark gray (2.5Y 4/1) clayey SAND, moist, medium dense to dense, fine, high sphericity, subangular 18502 (2.5Y 5/1) CLAY, very stiff, dry, low plasticity 18702 Image: Sand Sand Sand Sand Sand Sand Sand Sand		
				SC			NOTE: seeing some lignite fragments and debris, but no defined lignite layer		X

(Continued Next Page)

EA	COM						WELL NUMB	BER MW-2016-12 PAGE 3 OF 4
CLIEN	T Basin	Electr	ic Pow	er Co	operati	ve	PROJECT NAME Leland Olds Landfill	
PROJE		BER	60634	996			PROJECT LOCATION _Stanton, North Dakota	
DEPTH (ft)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG	Depth, bgs	MATERIAL DESCRIPTION	WELL CONSTRUCTION
65				SC		65.0	_ 184	44.2
				СН		67.5	Dark gray (2.5Y 4/1) sandy CLAY, soft, high plasticity, moist, 20-30% fine sand	41.7
				SC		68.0	Light olive brown (2.5Y 5/3) clayey SAND, soft, moist, fine, high sphericity,	
					<u>1, \1,</u>		Black lignite, wet	Grout (0' - 83.8' bgs)
70	SONIC 9	100	NA		<u>\\/, \\</u>	70.0	Dark gray (2.5Y 4/1) CLAY, hard, low plasticity	
	9			CL		72.0	Dark gray (2.5Y 4/1) CLAY, hard, low plasticity	(2' ags - 101' bgs)
				CL		73.0	Grey (2.5Y 6/1) sandy CLAY, hard, low plasticity, moist, fine	
			·	CL		74.0	Very dark grayish brown (2.5Y 3/2) CLAY, medium plasticity, soft, moist	
75			·	CL		75.0	Dark gray (2.5Y 4/1) CLAY, dry, low to medium plasticity, stiff	
						10.0	Very dark gray (2.5Y 3/1) CLAY, stiff, low to medium plasticity, moist	<u>942</u>
	SONIC 10	100	NA	CL		77.0	Dark gray (2.5Y 4/1) CLAY, dry, very stiff, low to medium plasticity, dry to moist	
	SONIC 11	100	NA	sc		85.0	 Gray (2.5Y 6/1) clayey SAND, dense, slightly moist, fine, high sphericity, angular to subangular, poor grading	
						90.0	1811 Black to very dark reddish gray lignite, dry to wet	1922 Filter Sand Pack (88 - 102' bgs)
	SONIC 12	100	NA	CL		96.0	 Gray (2.5Y 5/1) CLAY, very stiff, dry to wet, low plasticity	13.2 0.010" Slotted Pipe (91' - 101' bgs)

EA	COM						WELL NUMB	ER MV	/-2016-12 PAGE 4 OF 4
	T Basin				operati	ve	PROJECT NAME Leland Olds Landfill		
PROJE		BER	60634	1996		1	PROJECT LOCATION Stanton, North Dakota	1	
DEPTH (ft)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG	Depth, bgs	MATERIAL DESCRIPTION	WELL C	ONSTRUCTION
				CL					
100						100.0 100.5	1809. Black lignite (6" at top of run)		
				CL		101.5	Dark gray (2.5Y 4/1) CLAY, low plasticity, dry to moist, very stiff	<u>,</u>	
	SONIC	100	NA	CL			Gray (2.5Y 6/1) sandy CLAY, low plasticity, slightly moist, very stiff		
						103.5 104.0	Grey argillaceous limestone (mostly pulverized) 1805.		— Bentonite fill (102'-105' bgs)
105				SC		105.0	Gray (2.5 Y 5/1) clayey SAND, dense, very fine to fine, poorly graded, moist, high		(102'-105' bgs)
105					<u>/////</u>	106.0	sphericity, angular to subangular		
 - 110 - 115	SONIC 14	93	NA				Gray (2.5 Y 5/1) clayey SAND, dense, very fine to fine, poorly graded, wet, high sphericity, angular to subangular	_	
 _ 115 				sc					— Clay backfill from drilling samples (105'-125' bgs)
 	SONIC 15	100	NA						
125						125.0		2	
 							Bottom of borehole at 125.0 feet.		

Æ	COM					WELL NUMBE	ER MW-2016-13 PAGE 1 OF
LIENT	Basin	Electr	ric Pow	er Co	operative	PROJECT NAME Leland Olds Landfill	
	CT NUME	-				PROJECT LOCATION Stanton, North Dakota	
ATE S	STARTED) _10	/1/202	2		Control 10/2/2022 GROUND ELEVATION 1945.544 ft NAVD88 TOC EL	EVATION 1948.147 ft NAVD
RILLI		RAC	TOR _	Casc	ade Drilling	GROUND WATER LEVELS: Measured bgs or from	m top of casing, as noted
	NG METH					AT TIME OF DRILLING None Encountered ATD	
						Y AT END OF DRILLING None Encountered EOD	
OORE	DINATES	_ 579	9111.61	12 N	1783626.1	E AKGWA# AFTER DRILLING None Encountered AD	
(ff)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG Depth, bgs	MATERIAL DESCRIPTION	WELL CONSTRUCTION
0						No recovery	
-					1.8		
-	SONIC			OL	1.8 	19438 Grayish brown TOPSOIL (10YR 5/2) 19430	
4	1	70	NA	OL	<u>11.</u>	TOPSOIL, very dark grayish brown (10YR 3/2)	Volclav Benton
				ML		Black (5YR 2.5/1) sandy SILT, dry, medium stiffness, low plasticity, 30% very fine	Grout (0' - 129' bas)
5				CL	4.5	sand	
						some very fine, very pale brown (10YR 7/2) sandy lenses, mottled	(2' ags - 144'
-						No recovery	bgs)
-					7.8	1937.8	
-				CL	8.5	[Dark reddish brown (5YR 2.5/2) clayey SILT, very stiff, dry, medium plasticity, 10370	
-				ML		some very fine, very pale brown (10YR 7/2) sandy lenses, mottled]	
0	SONIC	73	NA		10.0	1935.5	
	2			СН		Black (5 YR 2.5/1) silty CLAY, dry medium stiffness, high plasticity	
-				CL	11.5	Light brownish gray (10YR 6/2) silty CLAY, dry to moist, medium plasticity, stiff, mottled	
				0	14.0	1931.5	
15					15.0	some black silt mixed in Brown (10YR 5/3) CLAY, moist, hard, medium plasticity, mottled 1930.5	
1.0	+				10.0	Brown (10YR 5/3) CLAY, moist, hard, medium plasticity, mottled	
-							
4							
4							
20	SONIC	50	NIA		20.0	1925.5	
	3	00	NA	СН	21.0	Very dark grayish brown (10YR 3/2) CLAY, moist, high plasticity, somewhat mottled	
-						Black and light yellowish brown (2.5Y 6/4) silty CLAY, moist, medium plasticity,	
-				CL		mottled	
-							
-				<u> </u>	24.0	Very dark gravish brown (10YR 3/2) CLAY, moist, high plasticity, somewhat	
25						mottled	
				СН			
1					28.0	<i></i>	
-				— — - СН		Dark gray (7.5 YR 4/1) sandy CLAY, wet, very stiff, high plasticity, 30% very fine	
-					<u>11</u> <u>29.0</u> <u>11</u> <u>29.5</u>	to fine sand	
30	SONIC			СН		Black lignite	<u>KA KA</u>

(Continued Next Page)

EA	COM						WELL NUMBE	ER MW-2016-13 PAGE 2 OF 5
	T <u>Basin</u>				operati	ve		
PROJE	ECT NUM	BER	60634	1996	1		PROJECT LOCATION Stanton, North Dakota	
00 DEPTH (ft)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG	WELL CONSTRUCTION		
	4	92	NA	СН			Dark gray (7.5YR 4/1) sandy CLAY, wet, very stiff, high plasticity, 30% very fine	
				 CL		31.5	sand Gray (10YR 5/1) sandy CLAY, hard, wet, medium plasticity, 40% very fine sand	Volclay Bentonite Grout (0' - 129' bgs)
35						35.0		
						38.5	- 1907.0	(2' ags - 144' bgs)
40 40 	SONIC 5	68	NA	CL		43.0	Very dark grayish brown (10YR 3/2) CLAY, medium stiffness, medium plasticity, wet, some red rock fragments (feldspathic arenite)	
				ML		46.0	Gray (2.5YR 6/1) sandy SILT, wet, stiff to very stiff, 40-50% very fine sand, low plasticity	<u>15</u>
				ML		48.5	Yellowish brown (10YR 5/4) clayey SILT, moist to dry, hard, low plasticity	2
	SONIC 6	108	NA	ML		55.0	plasticity, several zones of iron staining	
							No recovery	
OKEEN.GUI - 12/22/22 21:40 - 00 - 1 - 12/22/22 21:40 -	SONIC 7	78	NA	ML		59.0	Light olive brown (2.5Y 5/3) SILT, wet, stiff to hard, medium plasticity, slightly mottled 1886. Very dark gray to black organic SHALE and lignite coal. some pyrite in laminae, some very dark reddish black sediments	

EA	COM						WELL NUMBI	ER MV	V-2016-13 PAGE 3 OF 5
	T Basin				operativ	ve	PROJECT NAME Leland Olds Landfill		
PROJE	ECT NUM	BER	60634	1996			PROJECT LOCATION Stanton, North Dakota	-	
DEPTH (ft)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG	WELL	CONSTRUCTION		
65									
				ML		66.0 67.5	Bray (2.5Y 5/1) sandy SILT, wet, medium stiff to very stiff, medium plasticity, 20% very fine sand		
 70	SONIC 8	100	NA	<u>ML</u>		71.0	Black (10YR 2/1) SILT, moist, hard, low to medium plasticity1877_ Dark gray (2.5Y 4/1) sandy SILT, wet stiff to hard, low plasticity, 40-50% fine sand		Volclay Bentonite Grout (0' - 129' bgs) PVC Pipe (2' ags - 144'
	SONIC 9	100	NA	SM		71.0	Gray (2.5Y 5/1) silty SAND, wet, medium dense to dense, very fine to fine, 20% silt, high sphericity, subrounded, well-sorted, poorly graded		bgs)
	SONIC 10	100	NA	SM SM			becoming more silty (30-40% silt), low to medium plasticity (silty SAND)		
CK 2020 - MILLCREEK.601 - 12/22/22 21:49 -	SONIC 11	100	NA	ML CL		91.0 94.0 95.0 95.5	1854. Gray (10YR 6/1) and light gray (10YR 7/1) SILT, very stiff, dry to moist, low plasticity, some clay and sand, thinly laminated with alternating colors listed above, some brownish red staining 1851. Dark gray (10YR 4/1) CLAY, hard, dry, low to medium plasticity, massive, some very dark purple-gray-black staining No recovery 1850. Black to reddish black lignite 1851.		
	SONIC				<u>\\</u> <u>\\</u> <u>\</u>				

(Continued Next Page)

EA	COM						WELL NUMB	ERN	/W-2016-13 PAGE 4 OF 5
	T <u>Basin</u>				operati	ve	PROJECT NAME Leland Olds Landfill PROJECT LOCATION Stanton, North Dakota		
DEPTH (ft)	SAN					Depth, bgs	MATERIAL DESCRIPTION	WE	LL CONSTRUCTION
 	12 SONIC 13	95 83	NA		下 下 7 7 7 7 7 7 7 7 7 7 7 7 7		1843 No recovery		Volclay Bentonite Grout (0' - 129' bgs) PVC Pipe (2' ags - 144' bgs)
	SONIC 14	100	NA	CL		110.0	some silty sections Gray (2.5Y 5/1) SILT, dry, stiff, low plasticity, some very fine sand		
	SONIC 15	. 100	NA	ML		116.0	IR229 Gray (2.5Y 5/1) silty SAND, medium dense to dense, moist, very fine, subangular, very well-sorted, poorly graded, 20-30% silt		
	SONIC 16	100	NA	CL- ML		131.0	1814 Gray (2.5Y 5/1) sandy SILTS and CLAYS, stiff to very stiff, dry to moist, low plasticity, 40-50% very fine sand	5	Bentonite Seal (129' - 131' bgs) Filter Sand Pack (131 - 145' bgs)

AZ	COM						WELL NUMBE	ER MW-2016-13 PAGE 5 OF 5
	C <u>Basin</u>				operati	ve	PROJECT NAME Leland Olds Landfill PROJECT LOCATION Stanton, North Dakota	
DEPTH (ft)	SAMPLE TYPE NUMBER	% RECOVERY	POCKET PENE- TROMETER, TSF	U.S.C.S.	GRAPHIC LOG	Depth, bgs	MATERIAL DESCRIPTION	WELL CONSTRUCTION
 135				CL- ML			Black and reddish black lignite	Filter Sand Pack (131 - 145' bgs)
				CL			1808.0 Very dark, grayish brown (2.5Y 3/2) sandy CLAY, very stiff, moist, low plasticity, 10% sand (very fine) 1807.0 Very dark gray (10YR 3/1) SHALE, organic rich and lignite	0.010" Slotted
<u>140</u> 	SONIC 17	100	NA	CL		139.5	Very dark gray (2.5Y 3/1) CLAY, moist, stiff to very stiff, low plasticity, some sand 5-10% (very fine), alternating laminated beds (gray/very dark gray)	
 145	SONIC	100	NA	CL		144.0	1801.5 Reddish black lignite 1801.0 Very dark gray (2.5Y 3/1) CLAY, stiff, dry to moist	
						147.0	Bottom of borehole at 147.0 feet.	5 (145'-147' bgs)

Attachment C Data Input Files for Calculation of Upper and Lower Prediction Limits

Attachment B Data Input Files for Calculation of Upper and Lower Prediction Limits Background wells: MW-2016-3, MW-2016-4, MW-2016-5, MW-2016-6, MW-2016-8 CCR Landfill, Leland Olds Station, Stanton, ND

sys loc code	sample date	sample type code	Boron	D Boron	Calcium	D Calciur	Chloride	D Chlorid	Fluoride	D Fluorid	pН	D pH	Sulfate	D Sulfate	rds -	D TDS
MW-2016-3	9/29/2016		0.27	- 1	23	1	35	1	0.5	0		1	100	1	1400	1
MW-2016-3	2/16/2017	Ν	0.22	1	22	1	37	1	0.5	1	7.59	1	74	1	1500	1
MW-2016-3	3/17/2017	N	0.26	1	15	1	36	1	0.56	1	7.83	1	59	1	1500	1
MW-2016-3	4/12/2017	Ν	0.29	1	12	1	39	1	0.57	1	7.58	1	59	1	1500	1
MW-2016-3	5/19/2017	Ν	0.26	1	13	1	33	1	0.5	0	7.46	1	78	1	1800	1
MW-2016-3	6/22/2017		0.25	1	10	1					7.63	1			1500	1
MW-2016-3	7/20/2017		0.24	1	9.7	1					7.54	1			1600	1
MW-2016-3	8/23/2017		0.25	1	8.4	1	37	1	0.6	1	7.41	1	÷ .	1	1400	1
MW-2016-3	10/9/2017						41	1	0.54	1	7.54	1		1		
MW-2016-3	10/12/2017				7.0		40	1	0.58	1	7.54	1		1	1500	
MW-2016-3	4/19/2018		0.28	1	7.3	1	37	1	0.64	1	7.89	1	÷ .	1	1500	1
MW-2016-3	10/11/2018		0.257	1	6.53	1	37.6	1	0.548	1	8.24	1		1	1490	1
MW-2016-3	5/20/2019		0.244	1	5.6	1	37.3	1	0.314	1	7.66	<u>1</u>	-	1	1510	1
MW-2016-3 MW-2016-3	10/8/2019 6/10/2020		0.263	1	5.38 5.41	<u>1</u>	36.7 29.8	1	0.622	1	8 7.9	1		1	1520 1510	1
MW-2016-3	10/1/2020		0.240	1	5.41	1	29.0	1	0.512			1		1	1510	1
MW-2016-3	9/29/2016		0.234	1	11	1	18	1	0.58	1	7.92	1	42.2	1	1700	1
MW-2016-4	2/15/2017		0.24	1	9.9	1	10	1	0.63	1	7.61	1	370	1	1700	1
MW-2016-4	3/16/2017		0.22	1	10	1	20	1	0.58	1	7.59	1	360	1	1700	1
MW-2016-4	4/12/2017		0.25	1	9.5	1	20	1	0.6	1	7.41	1	370	1	1700	1
MW-2016-4	5/19/2017		0.23	1	8.5	1	17	1	0.54	1	7.36	1	350	1	1700	1
MW-2016-4	6/21/2017		0.24	1	8.1	1			0.01		7.31	1			1700	1
MW-2016-4	7/20/2017		0.22	1	10	1					7.27	1			1700	1
MW-2016-4	8/23/2017		0.25	1	9.7	1	19	1	0.58	1	7.24	1		1	1600	1
MW-2016-4	10/9/2017						18	1	0.56	1	7.61	1		1		
MW-2016-4	10/12/2017	Ν					18	1	0.57	1	7.69	1		1		
MW-2016-4	4/18/2018		0.25	1	7.6	1	20	1	0.62	1	8.14	1	350	1	1700	1
MW-2016-4	10/11/2018	Ν	0.248	1	6.67	1	20.9	1	0.567	1	8.43	1		1	1730	1
MW-2016-4	5/20/2019		0.237	1	5.8	1	20.2	1	0.31	1	7.83	1	-	1	1770	1
MW-2016-4	10/8/2019		0.232	1	5.36	1	20.5	1	0.641	1	8.22	1		1	1760	1
MW-2016-4	6/9/2020		0.234	1	5.37	1	13.2	1	0.516		8.13	1		1	1710	1
MW-2016-4	9/30/2020		0.246	1	5.39	1	30	0		0		1		1	1860	1
MW-2016-4	10/1/2020		0.246	1	5.39	1	30	0		0			368	1	1650	1
MW-2016-5	9/28/2016		0.24	1	23	1	7.9	1	0.5	0		1	600	1	1700	1
MW-2016-5	2/14/2017		0.24	1	18	1	8.8	1	0.52	1	7.51	1	600	1	1900	1
MW-2016-5	3/16/2017		0.25	1	13	1	8.2	1	0.5	0		1	590	1	1800	1
MW-2016-5	4/12/2017		0.25	1	12	1	7.9	1	0.55	1	7.32	1	610	1	1700	1
MW-2016-5	5/18/2017		0.25	1	11	1	6.2	1	0.5	0	7.22	1	590	1	1900	1
MW-2016-5	6/21/2017		0.25	1	9.9	<u>1</u>					7.32	<u>1</u>			1900	1
MW-2016-5	7/19/2017		0.23	1	9.8 9.9	1	7.0	1	0.56	1	7.36	1		1	1900 1700	1
MW-2016-5 MW-2016-5	8/23/2017 10/9/2017		0.24	1	9.9	1	7.3	1	0.56		7.45	1		1	1700	
MW-2016-5	10/12/2017						6.5	1	0.54	1	7.44	1		1		
MW-2016-5	4/19/2018		0.27	1	7.8	1	6.7	1	0.54	1	7.44	1		1	1900	1
MW-2016-5	10/11/2018		0.265	1	9.58	1	8.4	1	0.518	1	8.18	1		1	1900	1
MW-2016-5	5/20/2019		0.205	1	9.09	1	8.35	1	2.5	0		1		1	1890	1
MW-2016-5	10/8/2019		0.255	1	7.35	1	7.28	1	0.584	1	7.69	1		1	1890	1
MW-2016-5	6/9/2020		0.200		7.00		1.20		0.001		7.01	1			1000	
MW-2016-5	6/10/2020		0.237	1	6.5	1	5.31	1	0.451	1	7.91	1		1	1890	1
MW-2016-5	10/1/2020		0.263	1	6.8	1	30	0	0.5	0	0.40	4	500	1	1860	1
MW-2016-6	9/28/2016		0.21	1	43	1	9.1	1	0.5			1	520	1	1500	1
MW-2016-6	2/15/2017	Ν	0.27	1	16	1	6.3	1	0.5	0	7.55	1	730	1	2100	1
MW-2016-6	3/16/2017	Ν	0.29	1	13	1	15	0	2.5	0	7.58	1	740	1	2100	1
MW-2016-6	4/12/2017	Ν	0.29	1	12	1	5.8	1	0.5	0		1	770	1	2200	1
MW-2016-6	5/19/2017		0.27	1	13	1	4.7	1	0.5	0	1100	1		1	2100	1
MW-2016-6	6/22/2017		0.27	1	12	1					7.52	1			2100	1
MW-2016-6	7/20/2017		0.24		11	1					7.53	1			2100	1
MW-2016-6	8/23/2017		0.27	1	11	1	5.9	1	0.5			1		1	2000	1
MW-2016-6	10/10/2017			┞──┤			5.9	1	0.5			1		1		
MW-2016-6	10/11/2017		0.07		0.0	4	5.1	1	0.5		-	1	-	1	0400	
MW-2016-6 MW-2016-6	4/19/2018 10/11/2018		0.27	1	9.6 9.78	<u>1</u>	5.6 6.03	1	0.48	1	8.39 7.95	<u>1</u>	-	1	2100 1890	1
MW-2016-6	5/20/2019		0.287	1	9.78	1	6.03	1	2.5	0		1		1	2030	1
MW-2016-6	10/8/2019		0.27		6.49 7.93	1	6.38	1	0.428	1	7.40	1		1	2030	1
MW-2016-6	6/9/2020		0.200		1.33		0.00	1	0.420		8.05	1		1	2040	
MW-2016-6	6/10/2020		0.265	1	8.35	1	4.85	1	0.325	1	7.93	1		1	2040	1
MW-2016-6	10/1/2020		0.203		8.37	1	4.03	0			7.9	1		1	2040	1
MW-2016-8	9/27/2016		0.275		20	1	9	1	0.004			1	700	1	2200	1
MW-2016-8	2/13/2017		0.26		20	1	9.2	1	0.5			1	730	1	2200	1
MW-2016-8	3/16/2017		0.20	1	15	1	8.7	1	0.5			1	710	1	2200	1
MW-2016-8	4/11/2017		0.27	1	14	1	8.7	1	0.5			1	740	1	2200	1
MW-2016-8	5/18/2017		0.25	1	13	1	8	1	0.5			1		1	2200	1
MW-2016-8	6/22/2017		0.25		13	1					7.51	1			2200	1
MW-2016-8	7/19/2017	Ν	0.24	1	13	1					7.36	1			2300	1
MW-2016-8	8/22/2017		0.26	1	16	1	8.7	1	0.5			1	· = •	1	2100	1
MW-2016-8	10/9/2017						8.8	1	0.5			1		1		
MW-2016-8	10/12/2017						7.9	1	0.5			1		1		
MW-2016-8	4/18/2018		0.26		13	1	8.2	1	0.41		8.06	1	-	1	2200	1
MW-2016-8	10/11/2018		0.267	1	13.4	1	8.22	1	0.372	1	8.43	1		1	2320	1
MW-2016-8	5/20/2019		0.254	1	12.4	1	9.6	1	2.5			1		1	1910	1
MW-2016-8	10/8/2019		0.259	1	12.2	1	9.13	1	0.353	1	8.08	1		1	2200	1
MW-2016-8	6/9/2020									ļ	7.93	1		L	<u> </u>	
MW-2016-8	6/10/2020		0.23				6.67	1	0.221	1	7.9	1		1	2180	1
MW-2016-8	9/30/2020	N	0.266	1	12.1	1	30	0			7.92	1	675	1	2090	1